/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // See docs in ../ops/ctc_ops.cc. #define EIGEN_USE_THREADS #include #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/util/ctc/ctc_beam_search.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; inline float RowMax(const TTypes::UnalignedConstMatrix& m, int r, int* c) { *c = 0; CHECK_LT(0, m.dimension(1)); float p = m(r, 0); for (int i = 1; i < m.dimension(1); ++i) { if (m(r, i) > p) { p = m(r, i); *c = i; } } return p; } class CTCDecodeHelper { public: CTCDecodeHelper() : top_paths_(1) {} inline int GetTopPaths() const { return top_paths_; } void SetTopPaths(int tp) { top_paths_ = tp; } Status ValidateInputsGenerateOutputs( OpKernelContext* ctx, const Tensor** inputs, const Tensor** seq_len, Tensor** log_prob, OpOutputList* decoded_indices, OpOutputList* decoded_values, OpOutputList* decoded_shape) const { Status status = ctx->input("inputs", inputs); if (!status.ok()) return status; status = ctx->input("sequence_length", seq_len); if (!status.ok()) return status; const TensorShape& inputs_shape = (*inputs)->shape(); if (inputs_shape.dims() != 3) { return errors::InvalidArgument("inputs is not a 3-Tensor"); } const int64 max_time = inputs_shape.dim_size(0); const int64 batch_size = inputs_shape.dim_size(1); if (max_time == 0) { return errors::InvalidArgument("max_time is 0"); } if (!TensorShapeUtils::IsVector((*seq_len)->shape())) { return errors::InvalidArgument("sequence_length is not a vector"); } if (!(batch_size == (*seq_len)->dim_size(0))) { return errors::FailedPrecondition( "len(sequence_length) != batch_size. ", "len(sequence_length): ", (*seq_len)->dim_size(0), " batch_size: ", batch_size); } auto seq_len_t = (*seq_len)->vec(); for (int b = 0; b < batch_size; ++b) { if (!(seq_len_t(b) <= max_time)) { return errors::FailedPrecondition("sequence_length(", b, ") <= ", max_time); } } Status s = ctx->allocate_output( "log_probability", TensorShape({batch_size, top_paths_}), log_prob); if (!s.ok()) return s; s = ctx->output_list("decoded_indices", decoded_indices); if (!s.ok()) return s; s = ctx->output_list("decoded_values", decoded_values); if (!s.ok()) return s; s = ctx->output_list("decoded_shape", decoded_shape); if (!s.ok()) return s; return Status::OK(); } // sequences[b][p][ix] stores decoded value "ix" of path "p" for batch "b". Status StoreAllDecodedSequences( const std::vector > >& sequences, OpOutputList* decoded_indices, OpOutputList* decoded_values, OpOutputList* decoded_shape) const { // Calculate the total number of entries for each path const int64 batch_size = sequences.size(); std::vector num_entries(top_paths_, 0); // Calculate num_entries per path for (const auto& batch_s : sequences) { CHECK_EQ(batch_s.size(), top_paths_); for (int p = 0; p < top_paths_; ++p) { num_entries[p] += batch_s[p].size(); } } for (int p = 0; p < top_paths_; ++p) { Tensor* p_indices = nullptr; Tensor* p_values = nullptr; Tensor* p_shape = nullptr; const int64 p_num = num_entries[p]; Status s = decoded_indices->allocate(p, TensorShape({p_num, 2}), &p_indices); if (!s.ok()) return s; s = decoded_values->allocate(p, TensorShape({p_num}), &p_values); if (!s.ok()) return s; s = decoded_shape->allocate(p, TensorShape({2}), &p_shape); if (!s.ok()) return s; auto indices_t = p_indices->matrix(); auto values_t = p_values->vec(); auto shape_t = p_shape->vec(); int64 max_decoded = 0; int64 offset = 0; for (int64 b = 0; b < batch_size; ++b) { auto& p_batch = sequences[b][p]; int64 num_decoded = p_batch.size(); max_decoded = std::max(max_decoded, num_decoded); std::copy_n(p_batch.begin(), num_decoded, &values_t(offset)); for (int64 t = 0; t < num_decoded; ++t, ++offset) { indices_t(offset, 0) = b; indices_t(offset, 1) = t; } } shape_t(0) = batch_size; shape_t(1) = max_decoded; } return Status::OK(); } private: int top_paths_; TF_DISALLOW_COPY_AND_ASSIGN(CTCDecodeHelper); }; class CTCGreedyDecoderOp : public OpKernel { public: explicit CTCGreedyDecoderOp(OpKernelConstruction* ctx) : OpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("merge_repeated", &merge_repeated_)); } void Compute(OpKernelContext* ctx) override { const Tensor* inputs; const Tensor* seq_len; Tensor* log_prob = nullptr; OpOutputList decoded_indices; OpOutputList decoded_values; OpOutputList decoded_shape; OP_REQUIRES_OK(ctx, decode_helper_.ValidateInputsGenerateOutputs( ctx, &inputs, &seq_len, &log_prob, &decoded_indices, &decoded_values, &decoded_shape)); const TensorShape& inputs_shape = inputs->shape(); std::vector::UnalignedConstMatrix> input_list_t; const int64 max_time = inputs_shape.dim_size(0); const int64 batch_size = inputs_shape.dim_size(1); const int64 num_classes_raw = inputs_shape.dim_size(2); OP_REQUIRES( ctx, FastBoundsCheck(num_classes_raw, std::numeric_limits::max()), errors::InvalidArgument("num_classes cannot exceed max int")); const int num_classes = static_cast(num_classes_raw); auto inputs_t = inputs->tensor(); for (std::size_t t = 0; t < max_time; ++t) { input_list_t.emplace_back(inputs_t.data() + t * batch_size * num_classes, batch_size, num_classes); } auto seq_len_t = seq_len->vec(); auto log_prob_t = log_prob->matrix(); log_prob_t.setZero(); // Assumption: the blank index is num_classes - 1 int blank_index = num_classes - 1; // Perform best path decoding std::vector > > sequences(batch_size); auto decode = [&](const int64 begin, const int64 end) { for (int b = begin; b < end; ++b) { sequences[b].resize(1); auto &sequence = sequences[b][0]; int prev_indices = -1; for (int t = 0; t < seq_len_t(b); ++t) { int max_class_indices; log_prob_t(b, 0) += -RowMax(input_list_t[t], b, &max_class_indices); if (max_class_indices != blank_index && !(merge_repeated_ && max_class_indices == prev_indices)) { sequence.push_back(max_class_indices); } prev_indices = max_class_indices; } } }; const int64 kCostPerUnit = 50 * max_time * num_classes; const int64 total = batch_size; const DeviceBase::CpuWorkerThreads& worker_threads = *ctx->device()->tensorflow_cpu_worker_threads(); Shard(worker_threads.num_threads, worker_threads.workers, total, kCostPerUnit, decode); OP_REQUIRES_OK( ctx, decode_helper_.StoreAllDecodedSequences( sequences, &decoded_indices, &decoded_values, &decoded_shape)); } private: CTCDecodeHelper decode_helper_; bool merge_repeated_; TF_DISALLOW_COPY_AND_ASSIGN(CTCGreedyDecoderOp); }; REGISTER_KERNEL_BUILDER(Name("CTCGreedyDecoder").Device(DEVICE_CPU), CTCGreedyDecoderOp); // CTC beam search class CTCBeamSearchDecoderOp : public OpKernel { public: explicit CTCBeamSearchDecoderOp(OpKernelConstruction* ctx) : OpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("merge_repeated", &merge_repeated_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("beam_width", &beam_width_)); int top_paths; OP_REQUIRES_OK(ctx, ctx->GetAttr("top_paths", &top_paths)); decode_helper_.SetTopPaths(top_paths); } void Compute(OpKernelContext* ctx) override { const Tensor* inputs; const Tensor* seq_len; Tensor* log_prob = nullptr; OpOutputList decoded_indices; OpOutputList decoded_values; OpOutputList decoded_shape; OP_REQUIRES_OK(ctx, decode_helper_.ValidateInputsGenerateOutputs( ctx, &inputs, &seq_len, &log_prob, &decoded_indices, &decoded_values, &decoded_shape)); auto inputs_t = inputs->tensor(); auto seq_len_t = seq_len->vec(); auto log_prob_t = log_prob->matrix(); const TensorShape& inputs_shape = inputs->shape(); const int64 max_time = inputs_shape.dim_size(0); const int64 batch_size = inputs_shape.dim_size(1); const int64 num_classes_raw = inputs_shape.dim_size(2); OP_REQUIRES( ctx, FastBoundsCheck(num_classes_raw, std::numeric_limits::max()), errors::InvalidArgument("num_classes cannot exceed max int")); const int num_classes = static_cast(num_classes_raw); log_prob_t.setZero(); std::vector::UnalignedConstMatrix> input_list_t; for (std::size_t t = 0; t < max_time; ++t) { input_list_t.emplace_back(inputs_t.data() + t * batch_size * num_classes, batch_size, num_classes); } ctc::CTCBeamSearchDecoder<> beam_search(num_classes, beam_width_, &beam_scorer_, 1 /* batch_size */, merge_repeated_); Tensor input_chip(DT_FLOAT, TensorShape({num_classes})); auto input_chip_t = input_chip.flat(); std::vector > > best_paths(batch_size); std::vector log_probs; // Assumption: the blank index is num_classes - 1 for (int b = 0; b < batch_size; ++b) { auto& best_paths_b = best_paths[b]; best_paths_b.resize(decode_helper_.GetTopPaths()); for (int t = 0; t < seq_len_t(b); ++t) { input_chip_t = input_list_t[t].chip(b, 0); auto input_bi = Eigen::Map(input_chip_t.data(), num_classes); beam_search.Step(input_bi); } OP_REQUIRES_OK( ctx, beam_search.TopPaths(decode_helper_.GetTopPaths(), &best_paths_b, &log_probs, merge_repeated_)); beam_search.Reset(); for (int bp = 0; bp < decode_helper_.GetTopPaths(); ++bp) { log_prob_t(b, bp) = log_probs[bp]; } } OP_REQUIRES_OK(ctx, decode_helper_.StoreAllDecodedSequences( best_paths, &decoded_indices, &decoded_values, &decoded_shape)); } private: CTCDecodeHelper decode_helper_; ctc::CTCBeamSearchDecoder<>::DefaultBeamScorer beam_scorer_; bool merge_repeated_; int beam_width_; TF_DISALLOW_COPY_AND_ASSIGN(CTCBeamSearchDecoderOp); }; REGISTER_KERNEL_BUILDER(Name("CTCBeamSearchDecoder").Device(DEVICE_CPU), CTCBeamSearchDecoderOp); } // end namespace tensorflow