/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_KERNELS_CONCAT_LIB_CPU_H_ #define TENSORFLOW_CORE_KERNELS_CONCAT_LIB_CPU_H_ #define EIGEN_USE_THREADS #include #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/kernels/concat_lib.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { // ElementCopier must be a struct with a single Copy function, which is passed // the output pointer, input pointer, input index, and number of elements to // copy from input to output. template void ConcatCPUImpl( DeviceBase* d, const std::vector::ConstMatrix>>& inputs, int64 cost_per_unit, ElementCopier copier, typename TTypes::Matrix* output) { size_t num_inputs = inputs.size(); std::vector sizes; sizes.reserve(num_inputs); int64 row_size = 0; for (const auto& input : inputs) { sizes.push_back(input->dimension(1)); row_size += sizes.back(); } auto worker_threads = d->tensorflow_cpu_worker_threads(); int num_threads = std::min(4, worker_threads->num_threads); // strings define a different amount of work (generally much more) compared // with standard POD, so we parallelize differently. if (!std::is_same::value) { num_threads = static_cast(std::min(num_threads, output->size() / 4096)); } // Single threaded mode. // TODO(dga): Deduplicate this code w.r.t. sharded code below. if (num_threads == 0) { T* out = &(*output)(0, 0); std::vector inp; inp.reserve(num_inputs); for (const auto& input : inputs) { inp.push_back(&(*input)(0, 0)); } const int64 dim0 = output->dimension(0); for (int64 i = 0; i < dim0; ++i) { for (int64 j = 0; j < num_inputs; ++j) { auto size = sizes[j]; copier.Copy(out, inp[j], j, size); out += size; inp[j] += size; } } return; } // Sharded mode. auto work = [&row_size, &sizes, &inputs, &output, &copier, &num_inputs]( int64 start, int64 end) { int64 skipped_rows = start / row_size; T* out = output->data() + skipped_rows * row_size; T* out_start = output->data() + start; T* out_end = output->data() + end; // Handle partial row at start if (out < out_start) { for (size_t j = 0; j < num_inputs; ++j) { ptrdiff_t size = sizes[j]; ptrdiff_t offset = out_start - out; if (size <= offset) { out += size; continue; } const T* inp = &(*inputs[j])(skipped_rows, 0); if (offset > 0) { out += offset; inp += offset; size -= offset; } size = std::min(size, out_end - out); if (size <= 0) break; copier.Copy(out, inp, j, size); out += size; } ++skipped_rows; } if (out == out_end) return; CHECK(out >= out_start); CHECK(out < out_end); // Copy remaining data. std::vector inp; inp.reserve(num_inputs); for (const auto& input : inputs) { inp.push_back(&(*input)(skipped_rows, 0)); } const int64 dim0 = output->dimension(0); for (int64 i = skipped_rows; i < dim0; ++i) { for (int64 j = 0; j < num_inputs; ++j) { ptrdiff_t size = std::min(sizes[j], out_end - out); copier.Copy(out, inp[j], j, size); out += size; inp[j] += size; if (out == out_end) return; } } }; Shard(worker_threads->num_threads, worker_threads->workers, output->size(), cost_per_unit, work); } #ifdef TENSORFLOW_USE_SYCL template void ConcatSYCLImpl( const Eigen::SyclDevice& d, const std::vector::ConstMatrix>>& inputs, int64 cost_per_unit, ElementCopier copier, typename TTypes::Matrix* output) { size_t num_inputs = inputs.size(); std::vector sizes; sizes.reserve(num_inputs); int64 row_size = 0; for (const auto& input : inputs) { sizes.push_back(input->dimension(1)); row_size += sizes.back(); } T* out = &(*output)(0, 0); std::vector inp; inp.reserve(num_inputs); for (const auto& input : inputs) { inp.push_back(&(*input)(0, 0)); } const int64 dim0 = output->dimension(0); for (int64 i = 0; i < dim0; ++i) { for (int64 j = 0; j < num_inputs; ++j) { auto size = sizes[j]; d.memcpy(out, inp[j], size * sizeof(T)); out += size; inp[j] += size; } } } #endif // TENSORFLOW_USE_SYCL } // namespace tensorflow #endif // TENSORFLOW_CORE_KERNELS_CONCAT_LIB_CPU_H_