/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // See docs in ../ops/math_ops.cc. #define EIGEN_USE_THREADS #include #include "tensorflow/core/kernels/aggregate_ops.h" #include "tensorflow/core/kernels/aggregate_ops_cpu.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_encode_decode.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; #ifdef TENSORFLOW_USE_SYCL typedef Eigen::SyclDevice SYCLDevice; #endif // TENSORFLOW_USE_SYCL template class AddNOp : public OpKernel { public: explicit AddNOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { if (!ctx->ValidateInputsAreSameShape(this)) return; const Tensor& input0 = ctx->input(0); const int num = ctx->num_inputs(); if (num == 1) { ctx->set_output(0, input0); return; } // Try to forward and accumulate the result in one of the input buffers. int reused_input = -1; gtl::InlinedVector input_indices(num); std::iota(input_indices.begin(), input_indices.end(), 0); Tensor* output = nullptr; for (int input_idx = 0; input_idx < num; ++input_idx) { if (ctx->forward_input_to_output_with_shape(input_idx, 0, input0.shape(), &output)) { reused_input = input_idx; break; } } if (reused_input == -1) { OP_REQUIRES_OK(ctx, ctx->allocate_output(0, input0.shape(), &output)); } else if (reused_input > 0) { // Move the forwarded buffer to the front so we don't double count // anything if there are more than 8 inputs. input_indices[0] = reused_input; input_indices[reused_input] = 0; } auto To = output->flat(); #define I(IDX) ctx->input(input_indices[IDX]).flat() #if defined(__ANDROID_TYPES_SLIM__) // On Android by default,we only support additions of two arguments, so we // can reduce the number of template instantiations. OP_REQUIRES(ctx, num == 2, errors::InvalidArgument("Only additions of two arguments " "supported. Num inputs: ", num)); functor::Add2Functor functor2; functor2(ctx->template eigen_device(), To, I(0), I(1)); #else static const int kWidth = 8; int r = num % kWidth; switch (r) { case 2: { functor::Add2Functor functor2; functor2(ctx->template eigen_device(), To, I(0), I(1)); break; } case 3: { functor::Add3Functor functor3; functor3(ctx->template eigen_device(), To, I(0), I(1), I(2)); break; } case 4: { functor::Add4Functor functor4; functor4(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3)); break; } case 5: { functor::Add5Functor functor5; functor5(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4)); break; } case 6: { functor::Add6Functor functor6; functor6(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5)); break; } case 7: { functor::Add7Functor functor7; functor7(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5), I(6)); break; } case 0: { functor::Add8Functor functor8; functor8(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5), I(6), I(7)); r = 8; break; } case 1: { functor::Add9Functor functor9; functor9(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8)); r = 9; break; } } for (; r < num; r += kWidth) { functor::Add8pFunctor functor8p; functor8p(ctx->template eigen_device(), To, I(r), I(r + 1), I(r + 2), I(r + 3), I(r + 4), I(r + 5), I(r + 6), I(r + 7)); } #endif // defined(__ANDROID_TYPES_SLIM__) #undef I } }; template class AddNOp : public OpKernel { public: explicit AddNOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { if (!ctx->ValidateInputsAreSameShape(this)) return; const Tensor& input0 = ctx->input(0); const int num = ctx->num_inputs(); if (num == 1) { ctx->set_output(0, input0); return; } for (int i = 0; i < num; ++i) { // Step 1: ensure unary variants. OP_REQUIRES( ctx, ctx->input(i).dims() == 0, errors::InvalidArgument( "AddN of non-scalar Tensor with dtype=DT_VARIANT is not " "supported; inputs[", i, " has shape: ", ctx->input(i).shape().DebugString(), ".")); } TensorShape common_shape; OP_REQUIRES_OK(ctx, GetUnaryVariantShape(ctx->input(0), &common_shape)); // Step 2: access all variants and ensure shapes match. for (int i = 1; i < num; ++i) { TensorShape check_shape; OP_REQUIRES_OK(ctx, GetUnaryVariantShape(ctx->input(i), &check_shape)); OP_REQUIRES(ctx, common_shape == check_shape, errors::InvalidArgument( "AddN of Variants of differing shapes; inputs[0] shape: ", common_shape.DebugString(), ", inputs[", i, "] shape: ", check_shape.DebugString())); } // Step 3: attempt to add using // BinaryOpVariants(ADD_VARIANT_BINARY_OP, ...) // For the output create a default-constructed variant object. // TODO(ebrevdo): Perform summation in a tree-structure. Tensor out(cpu_allocator(), DT_VARIANT, TensorShape({})); Variant* v_out = &(out.scalar()()); OP_REQUIRES_OK( ctx, BinaryOpVariants( ctx, ADD_VARIANT_BINARY_OP, ctx->input(0).scalar()(), ctx->input(1).scalar()(), v_out)); for (int i = 2; i < num; ++i) { const Variant tmp = std::move(*v_out); const Variant& inp = ctx->input(i).scalar()(); OP_REQUIRES_OK(ctx, BinaryOpVariants(ctx, ADD_VARIANT_BINARY_OP, inp, tmp, v_out)); } ctx->set_output(0, out); } }; #define REGISTER_ADDN(type, dev) \ REGISTER_KERNEL_BUILDER( \ Name("AddN").Device(DEVICE_##dev).TypeConstraint("T"), \ AddNOp) #define REGISTER_ADDN_CPU(type) REGISTER_ADDN(type, CPU) TF_CALL_NUMBER_TYPES(REGISTER_ADDN_CPU); REGISTER_ADDN_CPU(Variant); #undef REGISTER_ADDN_CPU #if GOOGLE_CUDA #define REGISTER_ADDN_GPU(type) REGISTER_ADDN(type, GPU) TF_CALL_GPU_NUMBER_TYPES(REGISTER_ADDN_GPU); TF_CALL_complex64(REGISTER_ADDN_GPU); TF_CALL_complex128(REGISTER_ADDN_GPU); TF_CALL_variant(REGISTER_ADDN_GPU); #undef REGISTER_ADDN_GPU // A special GPU kernel for int32. // TODO(b/25387198): Also enable int32 in device memory. This kernel // registration requires all int32 inputs and outputs to be in host memory. REGISTER_KERNEL_BUILDER(Name("AddN") .Device(DEVICE_GPU) .TypeConstraint("T") .HostMemory("inputs") .HostMemory("sum"), AddNOp); #endif // GOOGLE_CUDA #ifdef TENSORFLOW_USE_SYCL REGISTER_ADDN(float, SYCL); REGISTER_ADDN(double, SYCL); // A special GPU kernel for int32. // TODO(b/25387198): Also enable int32 in device memory. This kernel // registration requires all int32 inputs and outputs to be in host memory. REGISTER_KERNEL_BUILDER(Name("AddN") .Device(DEVICE_SYCL) .TypeConstraint("T") .HostMemory("inputs") .HostMemory("sum"), AddNOp); #endif // TENSORFLOW_USE_SYCL #undef REGISTER_ADDN } // namespace tensorflow