/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/core/grappler/optimizers/data/map_vectorization.h" #include "tensorflow/core/grappler/optimizers/data/vectorization_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" // NOLINT #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { // Returns a FunctionDef containing a MapDefun op that wraps the original // function. FunctionDef* CreateMapDefunWrapper(const NodeDef& map_node, const FunctionDef& orig_func, FunctionDefLibrary* library) { FunctionDef* vectorized_func = library->add_function(); // Function inputs and outputs are the same as original, just // with different shapes. *vectorized_func->mutable_signature() = orig_func.signature(); graph_utils::SetUniqueGraphFunctionName("naively_vectorized_fn", library, vectorized_func); // Add MapDefun node NodeDef* map_defun_node = vectorized_func->mutable_node_def()->Add(); map_defun_node->set_op("MapDefun"); function_utils::SetUniqueFunctionNodeName(map_defun_node->op(), vectorized_func, map_defun_node); // Set attrs and inputs for (const string& k : {"f", "output_types", "output_shapes"}) { // Function, output types and (unbatched) shapes are the same as the // original map node. graph_utils::CopyAttribute(k, map_node, map_defun_node); } // Note that the inputs to the function are either regular arguments (for // which the function is mapped across their 0th dimension) or captured inputs // (for which the function takes the argument wholesale). We can infer // the split between these arguments from the `map_node`'s attrs. // The Targuments attr on `map_node` corresponds to a list of types of // MapDataset's captured inputs. auto t_captured = map_node.attr().at("Targuments"); // Get types of input arguments from original map function DataTypeVector t_args; // Regular arguments for (const auto& input : vectorized_func->signature().input_arg()) { t_args.push_back(input.type()); map_defun_node->add_input(input.name()); } // Erase the captured arguments from Targuments t_args.erase(t_args.end() - t_captured.list().type_size(), t_args.end()); AddNodeAttr("Targuments", t_args, map_defun_node); AddNodeAttr("Tcaptured", t_captured, map_defun_node); // Set return values to match output names string output_prefix = strings::StrCat(map_defun_node->name(), ":output:"); for (size_t i = 0; i < vectorized_func->signature().output_arg_size(); ++i) { const auto& output_arg = vectorized_func->signature().output_arg(i); (*vectorized_func->mutable_ret())[output_arg.name()] = strings::StrCat(output_prefix, i); } return vectorized_func; } FunctionDef* AddVectorizedFunction(const NodeDef& map_node, const FunctionDef& orig_func, FunctionDefLibrary* library) { // Vectorizes orig_func naively by wrapping in a MapDefun op, then performing // efficient vectorization with VectorizeMapDefun. FunctionDef* vectorized_func = CreateMapDefunWrapper(map_node, orig_func, library); const NodeDef& map_defun_node = vectorized_func->node_def(0); DCHECK_EQ(map_defun_node.op(), "MapDefun"); // TODO(b/116285210): Unreferenced functions should get cleaned up later FunctionDef* result; Status s = vectorization_utils::VectorizeMapDefun( *vectorized_func, map_defun_node, library, &result); if (!s.ok()) { LOG(WARNING) << "VectorizeMapDefun failed. The function will only be " "naively vectorized with MapDefun. Reason: " << s; return vectorized_func; } return result; } bool IsOutputShapesFullyDefined(const NodeDef& node) { auto* shapes_attr = gtl::FindOrNull(node.attr(), "output_shapes"); if (shapes_attr == nullptr) return false; const auto& shapes = shapes_attr->list().shape(); for (const TensorShapeProto& shape : shapes) { for (const auto& dim : shape.dim()) { if (dim.size() == -1) { return false; } } } return true; } bool IsStatefulFn(const FunctionLibraryDefinition& library, const FunctionDef& function_def) { for (const NodeDef& node_def : function_def.node_def()) { const OpDef* op_def; Status s = library.LookUpOpDef(node_def.op(), &op_def); if (!s.ok() || op_def->is_stateful()) { return true; } } return false; } NodeDef MakeNewBatchNode(const NodeDef& old_batch_node, const NodeDef& input_node, const FunctionDef& vectorized_func, MutableGraphView* graph) { NodeDef batch_node; batch_node.set_op(old_batch_node.op()); graph_utils::SetUniqueGraphNodeName(batch_node.op(), graph->GetGraph(), &batch_node); // Set the `input_dataset` input argument batch_node.add_input(input_node.name()); // Set the `batch_size` input_argument batch_node.add_input(old_batch_node.input(1)); if (batch_node.op() == "BatchDatasetV2") { // Set the `drop_remainder` input argument batch_node.add_input(old_batch_node.input(2)); } // Set attrs AttrValue output_types; for (const auto& input : vectorized_func.signature().input_arg()) { output_types.mutable_list()->add_type(input.type()); } (*batch_node.mutable_attr())["output_types"] = output_types; auto& output_shapes_attr = (*batch_node.mutable_attr())["output_shapes"]; const auto& input_shapes = input_node.attr().at("output_shapes").list().shape(); int64 batch_size = old_batch_node.attr().at("output_shapes").list().shape()[0].dim(0).size(); for (size_t i = 0; i < input_shapes.size(); ++i) { TensorShapeProto* shape = output_shapes_attr.mutable_list()->add_shape(); TensorShapeProto_Dim* dim = shape->add_dim(); dim->set_size(batch_size); shape->MergeFrom(input_shapes.Get(i)); } return batch_node; } NodeDef MakeNewMapNode(const NodeDef& old_map_node, const NodeDef& old_batch_node, const NodeDef& new_batch_node, const FunctionDef& vectorized_func, MutableGraphView* graph) { NodeDef map_node; map_node.set_op(old_map_node.op()); graph_utils::SetUniqueGraphNodeName(map_node.op(), graph->GetGraph(), &map_node); // Set the `input_dataset` input argument map_node.add_input(new_batch_node.name()); for (int i = 1; i < old_map_node.input_size(); i++) { // Set the `other_arguments` and `num_parallel_calls` input arguments map_node.add_input(old_map_node.input(i)); } // Set attrs graph_utils::CopyAttribute("Targuments", old_map_node, &map_node); auto& func_attr = (*map_node.mutable_attr())["f"]; func_attr.mutable_func()->set_name(vectorized_func.signature().name()); for (auto key : {"output_shapes", "output_types"}) { graph_utils::CopyAttribute(key, old_batch_node, &map_node); } (*map_node.mutable_attr())["use_inter_op_parallelism"].set_b(true); return map_node; } } // namespace Status MapVectorization::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* output) { *output = item.graph; MutableGraphView graph(output); std::set nodes_to_delete; for (const NodeDef& node : item.graph.node()) { // Find Map->Batch nodes. // TODO(rachelim): Optimize MapAndBatchDataset[V2] as well. if (node.op() != "BatchDataset" && node.op() != "BatchDatasetV2") { continue; } const NodeDef& batch_node(node); NodeDef* node2 = graph_utils::GetInputNode(batch_node, graph); if (node2->op() != "MapDataset" && node2->op() != "ParallelMapDataset") { continue; } // Use a more descriptive variable name now that we know the node type. NodeDef* map_node = node2; // Input to the map node NodeDef* input_node = graph_utils::GetInputNode(*map_node, graph); CHECK_NOTNULL(input_node); FunctionDefLibrary* library = output->mutable_library(); FunctionLibraryDefinition function_library(OpRegistry::Global(), *library); const FunctionDef* orig_func = function_library.Find(map_node->attr().at("f").func().name()); // Check that this is a valid optimization. if (!IsOutputShapesFullyDefined(*input_node) || !IsOutputShapesFullyDefined(*map_node) || IsStatefulFn(function_library, *orig_func)) { // 1. If any of the inputs have an unknown shape, don't optimize, since // inputs might not be batchable. // 2. If any of the map func outputs have an unknown shape, don't // optimize, so that batching errors surface as before. // 3. If the function is stateful, don't vectorize it. continue; } FunctionDef* vectorized_func = AddVectorizedFunction(*map_node, *orig_func, library); CHECK_NOTNULL(vectorized_func); auto* new_batch_node = graph.AddNode( MakeNewBatchNode(batch_node, *input_node, *vectorized_func, &graph)); auto* new_map_node = graph.AddNode(MakeNewMapNode( *map_node, batch_node, *new_batch_node, *vectorized_func, &graph)); graph.ReplaceInput(batch_node, *new_map_node); // Mark the `Map` and `Batch` nodes for removal. nodes_to_delete.insert(map_node->name()); nodes_to_delete.insert(batch_node.name()); } graph.DeleteNodes(nodes_to_delete); return Status::OK(); } void MapVectorization::Feedback(Cluster* cluster, const GrapplerItem& item, const GraphDef& optimize_output, double result) { // no-op } REGISTER_GRAPH_OPTIMIZER_AS(MapVectorization, "map_vectorization"); } // end namespace grappler } // end namespace tensorflow