/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/core/graph/costmodel.h" #include #include "tensorflow/core/framework/allocation_description.pb.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { const Microseconds kDefaultTimeEstimate(1); const Microseconds kMinTimeEstimate(1); } // namespace void CostModel::SuppressInfrequent() { // Find the median of the non-zero counts, and use half of its value // as the cutoff for a "normal" execution mode node. if (count_.empty()) return; std::vector non_zero; for (auto v : count_) { if (v > 0) non_zero.push_back(v); } const size_t sz = non_zero.size(); if (sz > 0) { std::nth_element(non_zero.begin(), non_zero.begin() + sz / 2, non_zero.end()); int32 median_value = non_zero[sz / 2]; min_count_ = median_value / 2; VLOG(1) << "num non_zero vals: " << non_zero.size() << " median_value " << median_value; } else { min_count_ = 1; } } void CostModel::MergeFromLocal(const Graph& g, const CostModel& cm) { CHECK(is_global_); CHECK(!cm.is_global()); for (const Node* n : g.nodes()) { const int local_id = cm.Id(n); const int global_id = Id(n); if (local_id < 0 || global_id < 0) continue; int num_slots = cm.slot_bytes_[local_id].size(); Ensure(global_id, num_slots); count_[global_id] += cm.count_[local_id]; time_[global_id] += cm.time_[local_id]; if (num_slots > 0) { if (slot_bytes_[global_id].empty()) { slot_bytes_[global_id].resize(num_slots); } else { CHECK_EQ(num_slots, slot_bytes_[global_id].size()); } for (int s = 0; s < num_slots; ++s) { slot_bytes_[global_id][s] += cm.slot_bytes_[local_id][s]; } } } } void CostModel::MergeFromGlobal(const CostModel& cm) { CHECK(is_global_); CHECK_EQ(true, cm.is_global()); const int num_nodes = cm.count_.size(); for (int i = num_nodes - 1; i >= 0; --i) { count_[i] += cm.count_[i]; time_[i] += cm.time_[i]; int num_slots = cm.slot_bytes_[i].size(); Ensure(i, num_slots); if (num_slots > 0) { if (slot_bytes_[i].empty()) { slot_bytes_[i].resize(num_slots); } else { CHECK_EQ(num_slots, slot_bytes_[i].size()); } for (int s = 0; s < num_slots; ++s) { slot_bytes_[i][s] += cm.slot_bytes_[i][s]; } } } } void CostModel::MergeFromStats(const NodeNameToCostIdMap& map, const StepStats& ss) { CHECK(is_global_); for (auto& ds : ss.dev_stats()) { for (auto& ns : ds.node_stats()) { NodeNameToCostIdMap::const_iterator iter = map.find(ns.node_name()); // We don't keep stats for nodes not in the global graph, i.e. // copy/send/recv nodes, feed/fetch, etc. if (iter == map.end()) continue; int32 global_id = iter->second; Ensure(global_id, ns.output_size()); int64 elapsed_micros = ns.op_end_rel_micros() - ns.op_start_rel_micros(); count_[global_id]++; time_[global_id] += elapsed_micros; for (auto& no : ns.output()) { int si = no.slot(); if (static_cast(si) >= slot_bytes_[global_id].size()) { slot_bytes_[global_id].resize(1 + si); } slot_bytes_[global_id][si] += no.tensor_description().allocation_description().requested_bytes(); } } } } void CostModel::Ensure(int id, int num_outputs) { if (slot_bytes_.size() <= static_cast(id)) { slot_bytes_.resize(id + 1); count_.resize(id + 1); time_.resize(id + 1); max_mem_usage_.resize(id + 1); max_exec_time_.resize(id + 1); output_port_alloc_ids_.resize(id + 1); } if (num_outputs > 0) { auto perslot = &slot_bytes_[id]; auto output_port_alloc_ids = &output_port_alloc_ids_[id]; auto max_mem_usage = &max_mem_usage_[id]; CHECK_LE(perslot->size(), num_outputs); DCHECK_EQ(output_port_alloc_ids->size(), perslot->size()); DCHECK_EQ(max_mem_usage->output_port_mem.size(), perslot->size()); DCHECK_EQ(max_mem_usage->output_port_shape.size(), perslot->size()); DCHECK_EQ(max_mem_usage->output_port_type.size(), perslot->size()); perslot->resize(num_outputs, Bytes(-1)); output_port_alloc_ids->resize(num_outputs, -1); max_mem_usage->output_port_mem.resize(num_outputs, Bytes(-1)); max_mem_usage->output_port_shape.resize(num_outputs, unknown_shape_); max_mem_usage->output_port_type.resize(num_outputs, DT_INVALID); } } void CostModel::SetNumOutputs(const Node* node, int num_outputs) { const int id = Id(node); if (id < 0) return; // Do not resize the number of slots before checking its existing number of // slots. Ensure(id, 0); auto perslot = &slot_bytes_[id]; if (!perslot->empty()) { CHECK_EQ(num_outputs, perslot->size()) << "Cannot resize slot_bytes, node=" << node->name(); } Ensure(id, num_outputs); } void CostModel::RecordCount(const Node* node, int count) { const int id = Id(node); if (id < 0) return; CHECK_LT(id, slot_bytes_.size()); count_[id] += count; } int32 CostModel::TotalCount(const Node* node) const { const int id = Id(node); if (id < 0) return 0; return (static_cast(id) < slot_bytes_.size()) ? count_[id] : 0; } void CostModel::RecordSize(const Node* node, int slot, Bytes bytes) { const int id = Id(node); if (id < 0) return; CHECK_LT(id, slot_bytes_.size()); auto perslot = &slot_bytes_[id]; CHECK_LT(slot, perslot->size()); auto v = &(*perslot)[slot]; if (*v >= 0) { *v += bytes; } else { *v = bytes; } } Bytes CostModel::TotalBytes(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast(id) >= slot_bytes_.size() || slot_bytes_[id].size() <= static_cast(slot)) { return Bytes(0); } return slot_bytes_[id][slot]; } Bytes CostModel::SizeEstimate(const Node* node, int slot) const { int32 count = TotalCount(node); if (count < min_count_) return Bytes(0); return TotalBytes(node, slot) / std::max(1, TotalCount(node)); } void CostModel::RecordTime(const Node* node, Microseconds time) { const int id = Id(node); if (id < 0) return; DCHECK(node->IsOp()) << node->DebugString(); Ensure(id, node->num_outputs()); time_[id] += time; } Microseconds CostModel::TotalTime(const Node* node) const { DCHECK(node->IsOp()) << node->DebugString(); const int id = Id(node); if (id < 0 || static_cast(id) >= time_.size() || time_[id] < Microseconds(0)) { return Microseconds(0); } return time_[id]; } Microseconds CostModel::TimeEstimate(const Node* node) const { int32 count = TotalCount(node); if (count <= min_count_) return kMinTimeEstimate; return std::max(kMinTimeEstimate, TotalTime(node) / std::max(1, count)); } void CostModel::CheckInitialized(const Graph& graph) const { for (const Node* n : graph.op_nodes()) { CHECK(static_cast(n->id()) < time_.size() && time_[n->id()] >= Microseconds(0)) << ": no time estimate for " << n->DebugString(); CHECK(static_cast(n->id()) < slot_bytes_.size()) << ": no size estimate for " << n->DebugString(); const auto& perslot = slot_bytes_[n->id()]; for (size_t i = 0; i < perslot.size(); i++) { CHECK_GE(perslot[i], Bytes(0)) << ": no size estimate for output# " << i << " of " << n->DebugString(); } } } void CostModel::RecordMaxMemorySize(const Node* node, int output_slot, Bytes bytes, const TensorShapeProto& tensor_shape, const DataType& dtype) { const int id = Id(node); if (id < 0) return; if (output_slot >= node->num_outputs()) { LOG(ERROR) << "Unexpected output slot for node " << node->DebugString() << ". Got " << output_slot << " but its num_outputs is " << node->num_outputs(); return; } Ensure(id, node->num_outputs()); auto& current_max = max_mem_usage_[id].output_port_mem[output_slot]; // If the memory allocator doesn't track memory usage, let's infer a lower // bound from the tensor shape and its data type. if (bytes.value() < 0) { bytes = MinTensorMemoryUsage(tensor_shape, dtype); } if (bytes.value() > current_max.value()) { current_max = bytes.value(); max_mem_usage_[id].output_port_shape[output_slot] = tensor_shape; max_mem_usage_[id].output_port_type[output_slot] = dtype; } } Bytes CostModel::MaxMemorySize(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast(id) >= max_mem_usage_.size() || max_mem_usage_[id].output_port_mem.size() <= static_cast(slot)) { return Bytes(0); } return max_mem_usage_[id].output_port_mem[slot]; } const TensorShapeProto& CostModel::MaxMemoryShape(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast(id) >= max_mem_usage_.size() || max_mem_usage_[id].output_port_shape.size() <= static_cast(slot)) { return unknown_shape_; } return max_mem_usage_[id].output_port_shape[slot]; } DataType CostModel::MaxMemoryType(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast(id) >= max_mem_usage_.size() || max_mem_usage_[id].output_port_type.size() <= static_cast(slot)) { return DT_INVALID; } return max_mem_usage_[id].output_port_type[slot]; } Bytes CostModel::TempMemorySize(const Node* node) const { const int id = Id(node); if (id < 0) { return Bytes(0); } return max_mem_usage_[id].temp_memory_size; } Bytes CostModel::PersistentMemorySize(const Node* node) const { const int id = Id(node); if (id < 0) { return Bytes(0); } return max_mem_usage_[id].persistent_memory_size; } void CostModel::RecordMemoryStats(const Node* node, const MemoryStats& memory_stats) { const int id = Id(node); if (id < 0) return; max_mem_usage_[id].temp_memory_size = memory_stats.temp_memory_size(); max_mem_usage_[id].persistent_memory_size = memory_stats.persistent_memory_size(); for (int64 alloc_id : memory_stats.persistent_tensor_alloc_ids()) { if (alloc_id > 0) { persistent_alloc_ids_.insert(alloc_id); } } } void CostModel::RecordMaxExecutionTime(const Node* node, Microseconds time) { const int id = Id(node); if (id < 0) return; Ensure(id, node->num_outputs()); max_exec_time_[id] = std::max(max_exec_time_[id], time); } Microseconds CostModel::MaxExecutionTime(const Node* node) const { const int id = Id(node); if (id < 0 || static_cast(id) >= max_exec_time_.size()) { return Microseconds(0); } return max_exec_time_[id]; } void CostModel::RecordAllocationId(const Node* node, int output_slot, int64 alloc_id) { const int id = Id(node); if (id < 0) return; Ensure(id, node->num_outputs()); output_port_alloc_ids_[id][output_slot] = alloc_id; } int64 CostModel::AllocationId(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast(id) >= output_port_alloc_ids_.size() || output_port_alloc_ids_[id].size() <= static_cast(slot)) { return -1; } return output_port_alloc_ids_[id][slot]; } bool CostModel::IsPersistentTensor(const Node* node, int64 alloc_id) const { if (persistent_alloc_ids_.count(alloc_id) > 0) { return true; } if (persistent_alloc_ids_by_devices_.find(node->assigned_device_name()) == persistent_alloc_ids_by_devices_.end()) { return false; } return persistent_alloc_ids_by_devices_.at(node->assigned_device_name()) .count(alloc_id); } Microseconds CostModel::CopyTimeEstimate(Bytes b, double network_latency_millis, double estimated_gbps) { // TODO(jeff,sanjay): estimate cost based on bandwidth along the // communication path and the type of transport we are using between // devices. // // We assume the copy time follows a linear model: // copy_time = copy_bytes / rate + min_time int64 copy_bytes = b.value(); const double bytes_per_usec = estimated_gbps * 1000.0 / 8; const double min_micros = network_latency_millis * 1000.0; return Microseconds( static_cast(copy_bytes / bytes_per_usec + min_micros)); } Microseconds CostModel::ComputationTimeEstimate(int64 math_ops) { // TODO(jeff,sanjay): Eventually we should pass in the type of device // (GPU vs. CPU) and use that to affect the estimate. // We estimate the microseconds using that value. We divide // by 1000 to convert the madd number into microseconds (assuming // roughly 1000 madds per microsecond (~1 GHz for one core)). return Microseconds(math_ops / 1000); } void CostModel::IncrementUpdateTimes() { update_times_++; } int32 CostModel::GetUpdateTimes() const { return update_times_; } // ---------------------------------------------------------------------------- // InitCostModel // ---------------------------------------------------------------------------- namespace { static void AddNodesToCostModel(const Graph& g, CostModel* cost_model) { for (Node* n : g.nodes()) { const int num_outputs = n->num_outputs(); cost_model->SetNumOutputs(n, num_outputs); for (int output = 0; output < num_outputs; output++) { // Set up an initial bogus estimate for the node's outputs cost_model->RecordSize(n, output, Bytes(1)); } } } static void AssignSizes(const Graph& g, CostModel* cost_model) { for (const Edge* e : g.edges()) { // Skip if it is a control edge. if (e->IsControlEdge()) { continue; } const Node* src = e->src(); // TODO(josh11b): Get an estimate from the Op Bytes size(1); cost_model->RecordSize(src, e->src_output(), size); } } // This generates an extremely simple initial guess for the // computation cost of each node. For ordinary Ops, its value should quickly // be wiped out by the real runtime measurements. For other Ops we don't // actually generate measurements, so suppression of infrequent Ops ends up // giving them 0 costs. So, this is not of much consequence except perhaps // in tests. static Microseconds TimeEstimateForNode(CostModel* cost_model, Node* n) { CHECK(n->IsOp()); VLOG(2) << "Node " << n->id() << ": " << n->name() << " type_string: " << n->type_string(); if (IsConstant(n) || IsVariable(n)) { return Microseconds(0); } return kDefaultTimeEstimate; } static void EstimateComputationCosts(const Graph& g, CostModel* cost_model) { for (Node* n : g.nodes()) { if (!n->IsOp()) continue; cost_model->RecordTime(n, TimeEstimateForNode(cost_model, n)); } } } // namespace void CostModel::InitFromGraph(const Graph& g) { const int num_node_ids = g.num_node_ids(); slot_bytes_.reserve(num_node_ids); count_.reserve(num_node_ids); time_.reserve(num_node_ids); max_mem_usage_.reserve(num_node_ids); max_exec_time_.reserve(num_node_ids); output_port_alloc_ids_.reserve(num_node_ids); AddNodesToCostModel(g, this); AssignSizes(g, this); EstimateComputationCosts(g, this); CheckInitialized(g); } void CostModel::AddToCostGraphDef(const Graph* graph, CostGraphDef* cost_graph) const { std::vector inputs; std::vector control_inputs; for (const Node* n : graph->nodes()) { CostGraphDef::Node* cnode = cost_graph->add_node(); cnode->set_name(n->name()); cnode->set_device(n->assigned_device_name()); cnode->set_id(Id(n)); inputs.clear(); inputs.resize(n->num_inputs(), nullptr); control_inputs.clear(); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { control_inputs.push_back(e); } else { inputs[e->dst_input()] = e; } } std::sort(control_inputs.begin(), control_inputs.end(), [this](Edge const* a, Edge const* b) { return Id(a->src()) < Id(b->src()); }); for (const Edge* e : inputs) { CostGraphDef::Node::InputInfo* input_info = cnode->add_input_info(); input_info->set_preceding_node(Id(e->src())); input_info->set_preceding_port(e->src_output()); } for (int i = 0; i < n->num_outputs(); i++) { CostGraphDef::Node::OutputInfo* output_info = cnode->add_output_info(); int64 alloc_id = AllocationId(n, i); int64 alias_to_input = -1; for (const Edge* e : inputs) { int64 input_alloc_id = AllocationId(e->src(), e->src_output()); if (input_alloc_id == alloc_id) { alias_to_input = e->dst_input(); break; } } output_info->set_alias_input_port(alias_to_input); output_info->set_dtype(MaxMemoryType(n, i)); *output_info->mutable_shape() = MaxMemoryShape(n, i); if (alias_to_input < 0 && IsPersistentTensor(n, alloc_id)) { output_info->set_size(0); } else { output_info->set_size(MaxMemorySize(n, i).value()); } } for (const Edge* e : control_inputs) { cnode->add_control_input(Id(e->src())); } cnode->set_temporary_memory_size(TempMemorySize(n).value()); cnode->set_persistent_memory_size(PersistentMemorySize(n).value()); cnode->set_compute_cost(MaxExecutionTime(n).value()); // For now we treat all send nodes as final. // TODO(yuanbyu): Send nodes for fetches shouldn't be treated as final. cnode->set_is_final(n->IsSend()); } } void CostModel::WriteSummaryToLog() const { LOG(INFO) << " min_count_=" << min_count_; for (size_t i = 0; i < count_.size(); ++i) { LOG(INFO) << "Node " << i << " count " << count_[i] << " total time " << time_[i] << " avg time " << (time_[i] / (std::max(1, count_[i]))); } } Bytes CostModel::MinTensorMemoryUsage(const TensorShapeProto& tensor_shape, const DataType& dtype) { if (tensor_shape.unknown_rank()) { return Bytes(-1); } size_t num_coefficients = 1; for (const TensorShapeProto::Dim& dim : tensor_shape.dim()) { // If the dimension is unknown, it has to be at least 1 num_coefficients *= std::max(dim.size(), 1); } return Bytes(num_coefficients * DataTypeSize(dtype)); } } // namespace tensorflow