/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/core/framework/node_def_util.h" #include #include #include #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/graph.pb_text.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb_text.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/tensor.pb_text.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/scanner.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { const char* const kColocationAttrName = "_class"; const char* const kColocationGroupPrefix = "loc:@"; AttrSlice::AttrSlice() : ndef_(nullptr) { static const AttrValueMap* const kEmptyAttrValueMap = new AttrValueMap; attrs_ = kEmptyAttrValueMap; } AttrSlice::AttrSlice(const NodeDef& node_def) : ndef_(&node_def), attrs_(&ndef_->attr()) {} AttrSlice::AttrSlice(const AttrValueMap* a) : ndef_(nullptr), attrs_(a) {} static string SummarizeAttrsHelper(AttrSlice attrs, StringPiece device) { string ret; // We sort the attrs so the output is deterministic. std::vector attr_names; attr_names.reserve(attrs.size()); for (const auto& attr : attrs) { attr_names.push_back(attr.first); } std::sort(attr_names.begin(), attr_names.end()); bool first = true; for (const string& attr_name : attr_names) { if (!first) strings::StrAppend(&ret, ", "); first = false; strings::StrAppend(&ret, attr_name, "=", SummarizeAttrValue(*attrs.Find(attr_name))); } // Consider the device to be a final attr with name "_device". if (!device.empty()) { if (!first) strings::StrAppend(&ret, ", "); first = false; strings::StrAppend(&ret, "_device=\"", device, "\""); } return ret; } string AttrSlice::SummarizeNode() const { return ndef_ ? SummarizeNodeDef(*ndef_) : strings::StrCat( "[", SummarizeAttrsHelper(*this, StringPiece()), "]"); } string SummarizeNode(const Node& node) { return SummarizeNodeDef(node.def()); } string SummarizeNodeDef(const NodeDef& node_def) { string ret = strings::StrCat(FormatNodeDefForError(node_def), " = ", node_def.op(), "["); strings::StrAppend(&ret, SummarizeAttrsHelper(node_def, node_def.device())); strings::StrAppend(&ret, "]("); // Output inputs, including control inputs, verbatim. bool first = true; for (const string& input : node_def.input()) { if (!first) strings::StrAppend(&ret, ", "); first = false; strings::StrAppend(&ret, input); } strings::StrAppend(&ret, ")"); return ret; } string FormatNodeForError(const Node& node) { return FormatNodeDefForError(node.def()); } string FormatNodeDefForError(const NodeDef& node_def) { return errors::FormatNodeNameForError(node_def.name()); } const AttrValue* AttrSlice::Find(StringPiece attr_name) const { // Currently, the collection used for NodeDef::attr() (google::protobuf::Map) // requires that the keys used for lookups have type 'const string&'. Because // this method takes a StringPiece, it is necessary to allocate a temporary // string, copy attr_name to it, and then use that temporary string for the // lookup. This causes an excessive number of short-lived allocations, and for // large graphs, this can be a significant cost. // // Because most nodes have a small number of attributes, a simple linear scan // is generally more efficient than a hashed lookup. If google::protobuf::Map // changes so that it supports efficient lookups using StringPiece instead of // const string&, then this code could be changed to use attrs_->find() again. for (const auto& attr : *attrs_) { if (attr.first == attr_name) { return &attr.second; } } return nullptr; } Status AttrSlice::Find(StringPiece attr_name, const AttrValue** attr_value) const { *attr_value = Find(attr_name); if (*attr_value != nullptr) { return Status::OK(); } Status s = errors::NotFound("No attr named '", attr_name, "' in NodeDef:"); // Skip AttachDef for internal attrs since it is a little bit // expensive and it is common for them to correctly not be included // in a NodeDef. if (!str_util::StartsWith(attr_name, "_") && ndef_ != nullptr) { s = AttachDef(s, *ndef_); } return s; } bool AttrSlice::EqualAttrs(AttrSlice other, Scratch* scratch) const { if (size() != other.size()) return false; for (const auto& attr : *other.attrs_) { auto iter = attrs_->find(attr.first); if (iter == attrs_->end()) return false; // TODO(irving): Comparing AttrValues by proto is slightly buggy, since // TensorProto is a nonunique representation of Tensor. This bug will go // away once AttrSlice switches over to NodeInfo. iter->second.SerializeToString(&scratch->a); attr.second.SerializeToString(&scratch->b); if (scratch->a != scratch->b) return false; } return true; } // The ... is to allow the caller to inject some value validation code. Use // just ; if no additional validation code is needed. #define DEFINE_GET_ATTR(TYPE, FIELD, ATTR_TYPE, APPEND_OP, CAST, ...) \ Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, \ TYPE* value) { \ const AttrValue* attr_value; \ TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); \ TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, ATTR_TYPE)); \ const auto& v = attr_value->FIELD(); \ __VA_ARGS__; \ *value = CAST; \ return Status::OK(); \ } \ Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, \ std::vector* value) { \ const AttrValue* attr_value; \ TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); \ TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "list(" ATTR_TYPE ")")); \ for (const auto& v : attr_value->list().FIELD()) { \ __VA_ARGS__; \ value->APPEND_OP(CAST); \ } \ return Status::OK(); \ } #define DEFINE_GET_ATTR_SIMPLE(TYPE, FIELD, ATTR_TYPE, APPEND_OP, CAST, ...) \ bool GetNodeAttrSimple(const AttrSlice& attrs, StringPiece attr_name, \ TYPE* value) { \ const AttrValue* attr_value = attrs.Find(attr_name); \ if (attr_value == nullptr) { \ return false; \ } \ Status s = AttrValueHasType(*attr_value, ATTR_TYPE); \ if (!s.ok()) { \ return false; \ } \ const auto& v = attr_value->FIELD(); \ __VA_ARGS__; \ *value = CAST; \ return true; \ } \ bool GetNodeAttrSimple(const AttrSlice& attrs, StringPiece attr_name, \ std::vector* value) { \ const AttrValue* attr_value = attrs.Find(attr_name); \ if (attr_value == nullptr) { \ return false; \ } \ Status s = AttrValueHasType(*attr_value, "list(" ATTR_TYPE ")"); \ if (!s.ok()) { \ return false; \ } \ for (const auto& v : attr_value->list().FIELD()) { \ __VA_ARGS__; \ value->APPEND_OP(CAST); \ } \ return true; \ } DEFINE_GET_ATTR(string, s, "string", emplace_back, v, ;) DEFINE_GET_ATTR_SIMPLE(string, s, "string", emplace_back, v, ;) DEFINE_GET_ATTR(int64, i, "int", emplace_back, v, ;) DEFINE_GET_ATTR(int32, i, "int", emplace_back, static_cast(v), if (static_cast(static_cast(v)) != v) { return errors::InvalidArgument("Attr ", attr_name, " has value ", v, " out of range for an int32"); }) DEFINE_GET_ATTR(float, f, "float", emplace_back, v, ;) // std::vector specialization does not have emplace_back until // c++14, so we have to use push_back (see // http://en.cppreference.com/w/cpp/container/vector/emplace_back) DEFINE_GET_ATTR(bool, b, "bool", push_back, v, ;) DEFINE_GET_ATTR(DataType, type, "type", emplace_back, static_cast(v), ;) DEFINE_GET_ATTR(TensorShapeProto, shape, "shape", emplace_back, v, ;) DEFINE_GET_ATTR(TensorShape, shape, "shape", emplace_back, TensorShape(v), TF_RETURN_IF_ERROR(TensorShape::IsValidShape(v));) DEFINE_GET_ATTR(PartialTensorShape, shape, "shape", emplace_back, PartialTensorShape(v), TF_RETURN_IF_ERROR(PartialTensorShape::IsValidShape(v));) DEFINE_GET_ATTR(Tensor, tensor, "tensor", emplace_back, t, Tensor t; if (!t.FromProto(v)) { return errors::InvalidArgument( "Attr ", attr_name, " has value ", ProtoShortDebugString(v), " that can't be converted to a Tensor"); }) DEFINE_GET_ATTR(NameAttrList, func, "func", emplace_back, v, ;); #undef DEFINE_GET_ATTR bool HasNodeAttr(const NodeDef& node_def, StringPiece attr_name) { return node_def.attr().find(string(attr_name)) != node_def.attr().end(); } static const string& kEmptyString = *new string(); const string& GetNodeAttrString(const AttrSlice& attrs, StringPiece attr_name) { const AttrValue* attr_value = attrs.Find(attr_name); if (attr_value == nullptr) { return kEmptyString; } Status s = AttrValueHasType(*attr_value, "string"); if (!s.ok()) { return kEmptyString; } return attr_value->s(); } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, DataTypeVector* value) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "list(type)")); for (const auto& v : attr_value->list().type()) { value->push_back(static_cast(v)); } return Status::OK(); } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, const TensorProto** value) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "tensor")); *value = &attr_value->tensor(); return Status::OK(); } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, const NameAttrList** value) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "func")); *value = &attr_value->func(); return Status::OK(); } namespace { // Helper for InOutTypesForNode(). Status AddArgToSig(const NodeDef& node_def, const OpDef::ArgDef& arg_def, DataTypeVector* sig) { const int original_size = sig->size(); if (!arg_def.number_attr().empty()) { // Same type repeated "repeats" times. int32 repeats = -1; TF_RETURN_IF_ERROR(GetNodeAttr(node_def, arg_def.number_attr(), &repeats)); if (repeats < 0) { return errors::InvalidArgument("Value for number_attr() ", repeats, " < 0"); } if (!arg_def.type_attr().empty()) { DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(node_def, arg_def.type_attr(), &dtype)); for (int i = 0; i < repeats; ++i) { sig->push_back(dtype); } } else if (arg_def.type() != DT_INVALID) { for (int i = 0; i < repeats; ++i) { sig->push_back(arg_def.type()); } } else { return errors::InvalidArgument("Missing type or type_attr field in ", ProtoShortDebugString(arg_def)); } } else if (!arg_def.type_attr().empty()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR( AttrSlice(node_def).Find(arg_def.type_attr(), &attr_value)); sig->push_back(attr_value->type()); } else if (!arg_def.type_list_attr().empty()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR( AttrSlice(node_def).Find(arg_def.type_list_attr(), &attr_value)); for (int dtype : attr_value->list().type()) { sig->push_back(static_cast(dtype)); } } else if (arg_def.type() != DT_INVALID) { sig->push_back(arg_def.type()); } else { return errors::InvalidArgument("No type fields in ", ProtoShortDebugString(arg_def)); } if (arg_def.is_ref()) { // For all types that were added by this function call, make them refs. for (size_t i = original_size; i < sig->size(); ++i) { (*sig)[i] = MakeRefType((*sig)[i]); } } return Status::OK(); } } // namespace Status InputTypeForNode(const NodeDef& node_def, const OpDef& op_def, int input_port, DataType* input_type) { DataTypeVector input_types; for (const auto& arg : op_def.input_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, &input_types)); if (input_types.size() > input_port) { const DataType dtype = input_types[input_port]; *input_type = dtype; return Status::OK(); } } return errors::InvalidArgument("Input ", input_port, " not found for node ", node_def.name()); } Status InputTypesForNode(const NodeDef& node_def, const OpDef& op_def, DataTypeVector* inputs) { for (const auto& arg : op_def.input_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, inputs)); } return Status::OK(); } Status OutputTypeForNode(const NodeDef& node_def, const OpDef& op_def, int output_port, DataType* output_type) { DataTypeVector output_types; for (const auto& arg : op_def.output_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, &output_types)); if (output_types.size() > output_port) { const DataType dtype = output_types[output_port]; *output_type = dtype; return Status::OK(); } } return errors::InvalidArgument("Output ", output_port, " not found for node ", node_def.name()); } Status OutputTypesForNode(const NodeDef& node_def, const OpDef& op_def, DataTypeVector* outputs) { for (const auto& arg : op_def.output_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, outputs)); } return Status::OK(); } Status InOutTypesForNode(const NodeDef& node_def, const OpDef& op_def, DataTypeVector* inputs, DataTypeVector* outputs) { TF_RETURN_IF_ERROR(InputTypesForNode(node_def, op_def, inputs)); return OutputTypesForNode(node_def, op_def, outputs); } Status NumOutputsForNode(const NodeDef& node_def, const OpDef& op_def, int* num_outputs) { DataTypeVector outputs; TF_RETURN_IF_ERROR(OutputTypesForNode(node_def, op_def, &outputs)); *num_outputs = outputs.size(); return Status::OK(); } Status ValidateNodeDef(const NodeDef& node_def, const OpDef& op_def) { if (node_def.op() != op_def.name()) { return errors::InvalidArgument("NodeDef op '", node_def.op(), "' does not match ", SummarizeOpDef(op_def), "; NodeDef: ", SummarizeNodeDef(node_def)); } bool seen_control = false; size_t num_inputs = 0; // TODO(josh11b): Unify the input field validation. for (const string& input : node_def.input()) { if (str_util::StartsWith(input, "^")) { seen_control = true; if (input.find(':') != string::npos) { return errors::InvalidArgument( "Control input '", input, "' must not have ':' in NodeDef: ", SummarizeNodeDef(node_def)); } } else if (seen_control) { return errors::InvalidArgument( "Non-control input '", input, "' after control input in NodeDef: ", SummarizeNodeDef(node_def)); } else { ++num_inputs; } } std::unordered_map op_attrs; for (const auto& attr : op_def.attr()) { if (!gtl::InsertIfNotPresent(&op_attrs, attr.name(), &attr)) { return errors::InvalidArgument("OpDef has duplicate attr name '", attr.name(), "': ", SummarizeOpDef(op_def)); } } for (const auto& attr : node_def.attr()) { // Allow internal optional attributes with names starting with "_". if (str_util::StartsWith(attr.first, "_")) { continue; } auto iter = op_attrs.find(attr.first); if (iter == op_attrs.end()) { // A common cause of this error is that TensorFlow has made a // backwards-compatible change to the NodeDef (e.g., adding a // new attr with a default value), but the binary consuming the // NodeDef does not know about the new attribute; the solution // in these cases is to ensure that the binary consuming the // NodeDef is built with a version of TensorFlow no earlier than // the binary producing it. return errors::InvalidArgument( "NodeDef mentions attr '", attr.first, "' not in ", SummarizeOpDef(op_def), "; NodeDef: ", SummarizeNodeDef(node_def), ". (Check whether your GraphDef-interpreting binary is up to date " "with your GraphDef-generating binary.)."); } TF_RETURN_WITH_CONTEXT_IF_ERROR( ValidateAttrValue(attr.second, *iter->second), "; NodeDef: ", SummarizeNodeDef(node_def), "; ", SummarizeOpDef(op_def)); // Keep track of which attr names have (not) been found in the NodeDef. op_attrs.erase(iter); } // Were all attrs in the OpDef found in the NodeDef? if (!op_attrs.empty()) { string attrs; for (const auto& attr_pair : op_attrs) { if (!attrs.empty()) strings::StrAppend(&attrs, "', '"); strings::StrAppend(&attrs, attr_pair.first); } return errors::InvalidArgument("NodeDef missing attr", op_attrs.size() == 1 ? " '" : "s '", attrs, "' from ", SummarizeOpDef(op_def), "; NodeDef: ", SummarizeNodeDef(node_def)); } // Validate the number of inputs. DataTypeVector inputs, outputs; TF_RETURN_IF_ERROR(InOutTypesForNode(node_def, op_def, &inputs, &outputs)); if (num_inputs != inputs.size()) { return errors::InvalidArgument( "NodeDef expected inputs '", DataTypeVectorString(inputs), "' do not match ", num_inputs, " inputs specified; ", SummarizeOpDef(op_def), "; NodeDef: ", SummarizeNodeDef(node_def)); } return Status::OK(); } namespace { // Helpers for NameRangesForNode() Status ComputeArgRange(const NodeDef& node_def, const OpDef::ArgDef& arg_def, const OpDef& op_def, int* num) { if (!arg_def.number_attr().empty()) { // Same type repeated "num" times. return GetNodeAttr(node_def, arg_def.number_attr(), num); } else if (!arg_def.type_list_attr().empty()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR( AttrSlice(node_def).Find(arg_def.type_list_attr(), &attr_value)); *num = attr_value->list().type_size(); } else if (!arg_def.type_attr().empty() || arg_def.type() != DT_INVALID) { *num = 1; } else { return errors::InvalidArgument( "Argument '", arg_def.name(), "' incorrectly specified in op definition: ", SummarizeOpDef(op_def)); } return Status::OK(); } Status NameRangesHelper(const NodeDef& node_def, const protobuf::RepeatedPtrField& args, const OpDef& op_def, NameRangeMap* result) { int start = 0; int num; for (const auto& arg : args) { TF_RETURN_IF_ERROR(ComputeArgRange(node_def, arg, op_def, &num)); (*result)[arg.name()] = std::make_pair(start, start + num); start += num; } return Status::OK(); } } // namespace Status NameRangesForNode(const NodeDef& node_def, const OpDef& op_def, NameRangeMap* inputs, NameRangeMap* outputs) { if (inputs != nullptr) { TF_RETURN_IF_ERROR( NameRangesHelper(node_def, op_def.input_arg(), op_def, inputs)); } if (outputs != nullptr) { return NameRangesHelper(node_def, op_def.output_arg(), op_def, outputs); } return Status::OK(); } Status NameRangesForNode(const Node& node, const OpDef& op_def, NameRangeMap* inputs, NameRangeMap* outputs) { return NameRangesForNode(node.def(), op_def, inputs, outputs); } void AddDefaultsToNodeDef(const OpDef& op_def, NodeDef* node_def) { for (const auto& attr_def : op_def.attr()) { AttrSlice attrs(*node_def); if (attr_def.has_default_value() && !attrs.Find(attr_def.name())) { AddNodeAttr(attr_def.name(), attr_def.default_value(), node_def); } } } namespace { using ::tensorflow::strings::Scanner; bool IsValidOpName(StringPiece sp) { return Scanner(sp) .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE) .Eos() .GetResult(); } bool IsValidDataInputName(StringPiece sp) { // Data inputs are op_name, op_name:0, or op_name:12345. Scanner scan(sp); scan.One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); if (scan.Peek() == ':') { scan.OneLiteral(":"); if (scan.Peek() == '0') { scan.OneLiteral("0"); // :0 } else { scan.Many(Scanner::DIGIT); // :[1-9][0-9]* } } scan.Eos(); return scan.GetResult(); } bool IsValidControlInputName(StringPiece sp) { return Scanner(sp) .OneLiteral("^") .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE) .Eos() .GetResult(); } } // namespace Status ValidateOpInput(const string& input_name, bool* is_control_input) { *is_control_input = false; if (IsValidDataInputName(input_name)) { return Status::OK(); } else if (IsValidControlInputName(input_name)) { *is_control_input = true; return Status::OK(); } else { return errors::InvalidArgument("Illegal op input name '", input_name, "'"); } } Status ValidateOpName(const string& op_name) { if (IsValidOpName(op_name)) { return Status::OK(); } else { return errors::InvalidArgument("Illegal op name '", op_name, "'"); } } Status ValidateExternalNodeDefSyntax(const NodeDef& node_def) { Status s = ValidateOpName(node_def.name()); if (!s.ok()) { return AttachDef(s, node_def); } bool in_control_inputs = false; for (const string& input_name : node_def.input()) { bool is_control_input; s = ValidateOpInput(input_name, &is_control_input); if (!s.ok()) { return AttachDef(s, node_def); } if (in_control_inputs && !is_control_input) { return AttachDef(errors::InvalidArgument( "All control inputs must follow all data inputs"), node_def); } in_control_inputs = is_control_input; } return Status::OK(); } Status AttachDef(const Status& status, const NodeDef& node_def) { Status ret = status; errors::AppendToMessage( &ret, strings::StrCat(" [[", SummarizeNodeDef(node_def), "]]")); return ret; } Status AttachDef(const Status& status, const Node& node) { return AttachDef(status, node.def()); } void AddNodeAttr(StringPiece name, const AttrValue& value, NodeDef* node_def) { node_def->mutable_attr()->insert( AttrValueMap::value_type(string(name), value)); } #define ADD_NODE_ATTR(T) \ void AddNodeAttr(StringPiece name, T value, NodeDef* node_def) { \ AttrValue attr_value; \ SetAttrValue(value, &attr_value); \ AddNodeAttr(name, attr_value, node_def); \ } ADD_NODE_ATTR(StringPiece) ADD_NODE_ATTR(const char*) ADD_NODE_ATTR(int32) ADD_NODE_ATTR(int64) ADD_NODE_ATTR(float) ADD_NODE_ATTR(double) ADD_NODE_ATTR(bool) ADD_NODE_ATTR(DataType) ADD_NODE_ATTR(const PartialTensorShape&) ADD_NODE_ATTR(const Tensor&) ADD_NODE_ATTR(const TensorProto&) ADD_NODE_ATTR(const NameAttrList&) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(const std::vector&) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) ADD_NODE_ATTR(gtl::ArraySlice) #undef ADD_NODE_ATTR void AddAttr(StringPiece name, const AttrValue& value, AttrValueMap* map) { map->insert(AttrValueMap::value_type(string(name), value)); } #define ADD_ATTR(T) \ void AddAttr(StringPiece name, T value, AttrValueMap* map) { \ AttrValue attr_value; \ SetAttrValue(value, &attr_value); \ AddAttr(name, attr_value, map); \ } ADD_ATTR(bool) #undef ADD_ATTR Status AddPrefixAndSuffixToNode(StringPiece prefix, StringPiece suffix, NodeDef* node_def) { node_def->set_name(strings::StrCat(prefix, node_def->name(), suffix)); if (node_def->op() == "Enter" || node_def->op() == "RefEnter") { string frame_name; TF_RETURN_IF_ERROR(GetNodeAttr(*node_def, "frame_name", &frame_name)); AttrValue& attr = (*node_def->mutable_attr())["frame_name"]; frame_name = strings::StrCat(prefix, frame_name, suffix); attr.set_s(frame_name); } return Status::OK(); } } // namespace tensorflow