#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_PENDING_COUNTS_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_PENDING_COUNTS_H_ /* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/util/port.h" namespace tensorflow { // PendingCounts is an internal helper class to keep track of pending and // dead counts for nodes, for use in the ExecutorState module. It // holds a map from Handles to various counts for that handle. This // information is needed per frame iteration. The amount of memory // needed for an iteration is the same across all executions of the // iteration. The memory amount and handles are precomputed at startup // using a Layout object. // // PendingCounts::Layout layout; // std::vector h(C); // for (int id = 0; id < C; id++) { // h[id] = r.AddHandle(max_pending[id], max_dead[id]); // } // // When we actually want to start an iteration we first create a // PendingCounts object and then index into it using the precomputed // handles: // PendingCounts counts(layout); // ... // counts.decrement_pending(h[id], 1); class PendingCounts { public: // The state machine for a node's execution. enum NodeState { // The pending count for the node > 0. PENDING_NOTREADY, // The pending count for the node == 0, but the node has not // started executing. PENDING_READY, // The node has started executing. STARTED, // The node has finished executing. COMPLETED }; // An opaque handle indicating where in the PendingCounts data structure // the appropriate count information can be found. class Handle; // Given a node that needs to represent counts no larger than the // specified "max_pending_count" and "max_dead_count", create a // handle that can be passed to various PendingCounts routines // to retrieve the count data for this node. class Layout { public: Handle CreateHandle(size_t max_pending_count, size_t max_dead_count); private: friend class PendingCounts; int next_offset_ = 0; // Next byte offset to allocate }; // Create a new PendingCounts object that can hold the state of // all the Handles allocated from "final_allocator". explicit PendingCounts(Layout layout) : num_bytes_(layout.next_offset_), bytes_(new char[num_bytes_]) {} // Create a new PendingCounts object with the same layout and counts // as "other". explicit PendingCounts(const PendingCounts& other) : num_bytes_(other.num_bytes_), bytes_(new char[num_bytes_]) { CHECK_EQ(uintptr_t(bytes_) % alignof(LargeCounts), 0); memcpy(bytes_, other.bytes_, other.num_bytes_); } ~PendingCounts() { delete[] bytes_; } void set_initial_count(Handle h, size_t pending_count) { if (h.is_large_) { LargeCounts* c = Large(h); c->pending = pending_count; c->dead_count = 0; c->has_started = 0; } else { PackedCounts* c = Packed(h); DCHECK_LE(pending_count, kMaxCountForPackedCounts); c->pending = pending_count; c->dead_count = 0; c->has_started = 0; } } NodeState node_state(Handle h) { if (h.is_large_) { return NodeStateForStruct(Large(h)); } else { return NodeStateForStruct(Packed(h)); } } void mark_started(Handle h) { DCHECK_EQ(pending(h), 0); if (h.is_large_) { LargeCounts* c = Large(h); DCHECK_EQ(c->has_started, 0); c->has_started = 1; } else { PackedCounts* c = Packed(h); DCHECK_EQ(c->has_started, 0); c->has_started = 1; } } void mark_completed(Handle h) { if (h.is_large_) { LargeCounts* c = Large(h); DCHECK_EQ(c->has_started, 1); c->pending = 1; } else { PackedCounts* c = Packed(h); DCHECK_EQ(c->has_started, 1); c->pending = 1; } } int pending(Handle h) { if (h.is_large_) { LargeCounts* c = Large(h); if (PENDING_NOTREADY == NodeStateForStruct(c)) { return c->pending; } else { // The pending count encodes the state once the node has // started, so just return 0. return 0; } } else { PackedCounts* c = Packed(h); if (PENDING_NOTREADY == NodeStateForStruct(c)) { return c->pending; } else { // The pending count encodes the state once the node has // started, so just return 0. return 0; } } } int decrement_pending(Handle h, int v) { DCHECK_GE(pending(h), v); if (h.is_large_) { LargeCounts* c = Large(h); c->pending -= v; return c->pending; } else { PackedCounts* c = Packed(h); c->pending -= v; return c->pending; } } // Mark a merge node as live // REQUIRES: Node corresponding to "h" is a merge node void mark_live(Handle h) { if (h.is_large_) { LargeCounts* c = Large(h); // Only do anything if the node hasn't already started executing. if (PENDING_NOTREADY == NodeStateForStruct(c)) { c->pending &= ~static_cast(0x1); } } else { PackedCounts* c = Packed(h); // Only do anything if the node hasn't already started executing. if (PENDING_NOTREADY == NodeStateForStruct(c)) { static_assert(7 == kMaxCountForPackedCounts, "Live flag incorrect for max packed count"); c->pending &= 0x6; } } } int dead_count(Handle h) { int r = h.is_large_ ? Large(h)->dead_count : Packed(h)->dead_count; return r; } void increment_dead_count(Handle h) { if (h.is_large_) { LargeCounts* c = Large(h); if (PENDING_NOTREADY == NodeStateForStruct(c)) { c->dead_count++; } } else { PackedCounts* c = Packed(h); if (PENDING_NOTREADY == NodeStateForStruct(c)) { DCHECK_LT(c->dead_count, kMaxCountForPackedCounts); c->dead_count++; } } } // A streamlined routine that does several pieces of bookkeeping at // once. Equivalent to: // if (increment_dead) increment_dead_count(h); // decrement_pending(h, 1); // *pending_result = pending(h); // *dead_result = dead_count(h); void adjust_for_activation(Handle h, bool increment_dead, int* pending_result, int* dead_result) { DCHECK_GE(pending(h), 1); if (h.is_large_) { adjust_for_activation_shared(Large(h), increment_dead, pending_result, dead_result); } else { adjust_for_activation_shared(Packed(h), increment_dead, pending_result, dead_result); } } class Handle { public: Handle() : byte_offset_(0), is_large_(0) {} private: friend class PendingCounts; int byte_offset_ : 31; // Byte offset of the rep in PendingCounts object bool is_large_ : 1; // If true, rep is LargeCounts; otherwise PackedCounts }; private: template inline void adjust_for_activation_shared(T* c, bool increment_dead, int* pending_result, int* dead_result) { if (increment_dead) { if (PENDING_NOTREADY == NodeStateForStruct(c)) { c->dead_count++; } } c->pending -= 1; *dead_result = c->dead_count; *pending_result = c->pending; } // We keep track of the pending count and dead input count for each // graph node. The representation used here is designed to be cache // efficient for graphs with large numbers of nodes, where most // nodes have relatively small maximum pending counts (e.g. for one // LSTM model, 99% of 5000+ nodes had in-degrees of 3 or less). We // use one byte to hold both the pending and dead count for a node // where these together can fit in one byte, and we use a hash table // to handle the rare node ids that need larger counts than this. // Each frame in this subgraph has its own PendingCounts. // We use 3 bits each for dead_count and pending. static const int kMaxCountForPackedCounts = 7; // Most counts are small, so we pack a pending count and a dead // count into 3 bits each, use 1 bit to indicate that the node has // started computing. struct PackedCounts { uint8 pending : 3; uint8 dead_count : 3; uint8 has_started : 1; }; struct LargeCounts { uint32 pending; uint32 dead_count : 31; uint8 has_started : 1; }; template NodeState NodeStateForStruct(T* c) const { if (c->has_started) { return (c->pending == 0) ? STARTED : COMPLETED; } else { return (c->pending == 0) ? PENDING_READY : PENDING_NOTREADY; } } inline LargeCounts* Large(Handle h) { DCHECK(h.is_large_); DCHECK_LE(h.byte_offset_ + sizeof(LargeCounts), num_bytes_); DCHECK_EQ(h.byte_offset_ % alignof(LargeCounts), 0); return reinterpret_cast(bytes_ + h.byte_offset_); } inline PackedCounts* Packed(Handle h) { DCHECK(!h.is_large_); DCHECK_LE(h.byte_offset_ + sizeof(PackedCounts), num_bytes_); return reinterpret_cast(bytes_ + h.byte_offset_); } const int num_bytes_; // Just for bounds checking in debug mode char* bytes_; // Array of num_bytes_ bytes void operator=(const PendingCounts&) = delete; }; inline PendingCounts::Handle PendingCounts::Layout::CreateHandle( size_t max_pending_count, size_t max_dead_count) { Handle result; if ((max_pending_count > kMaxCountForPackedCounts) || (max_dead_count > kMaxCountForPackedCounts)) { int B = sizeof(LargeCounts); // Round byte offset to proper alignment DCHECK_GE(sizeof(LargeCounts), alignof(LargeCounts)); int64 offset = ((static_cast(next_offset_) + B - 1) / B) * B; result.byte_offset_ = offset; result.is_large_ = true; next_offset_ = result.byte_offset_ + B; } else { result.byte_offset_ = next_offset_; result.is_large_ = false; DCHECK_EQ(sizeof(PackedCounts), 1); next_offset_ += sizeof(PackedCounts); } return result; } } // end namespace tensorflow #endif // TENSORFLOW_CORE_COMMON_RUNTIME_PENDING_COUNTS_H_