# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for solvers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops def create_operator(matrix): """Creates a linear operator from a rank-2 tensor.""" linear_operator = collections.namedtuple( "LinearOperator", ["shape", "dtype", "apply", "apply_adjoint"]) # TODO(rmlarsen): Handle SparseTensor. shape = matrix.get_shape() if shape.is_fully_defined(): shape = shape.as_list() else: shape = array_ops.shape(matrix) return linear_operator( shape=shape, dtype=matrix.dtype, apply=lambda v: math_ops.matmul(matrix, v, adjoint_a=False), apply_adjoint=lambda v: math_ops.matmul(matrix, v, adjoint_a=True)) def identity_operator(matrix): """Creates a linear operator from a rank-2 identity tensor.""" linear_operator = collections.namedtuple( "LinearOperator", ["shape", "dtype", "apply", "apply_adjoint"]) shape = matrix.get_shape() if shape.is_fully_defined(): shape = shape.as_list() else: shape = array_ops.shape(matrix) return linear_operator( shape=shape, dtype=matrix.dtype, apply=lambda v: v, apply_adjoint=lambda v: v) # TODO(rmlarsen): Measure if we should just call matmul. def dot(x, y): return math_ops.reduce_sum(math_ops.conj(x) * y) # TODO(rmlarsen): Implement matrix/vector norm op in C++ in core. # We need 1-norm, inf-norm, and Frobenius norm. def l2norm_squared(v): return constant_op.constant(2, dtype=v.dtype.base_dtype) * nn_ops.l2_loss(v) def l2norm(v): return math_ops.sqrt(l2norm_squared(v)) def l2normalize(v): norm = l2norm(v) return v / norm, norm