/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifdef TENSORFLOW_USE_MPI #include #include #include #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/mutex.h" #define EIGEN_USE_THREADS #if GOOGLE_CUDA #include #include "tensorflow/stream_executor/stream.h" #endif #include "tensorflow/stream_executor/lib/statusor.h" #define OMPI_SKIP_MPICXX #include "third_party/mpi/mpi.h" #include "tensorflow/contrib/mpi_collectives/mpi_message.pb.h" #include "tensorflow/contrib/mpi_collectives/ring.h" /* * MPI Allreduce and Allgather Ops for TensorFlow. * * TensorFlow natively provides inter-device communication through send and * receive ops and inter-node communication through Distributed TensorFlow, * based on the same send and receive abstractions. These end up being * insufficient for synchronous data-parallel training on HPC clusters where * Infiniband or other high-speed interconnects are available. This module * implements MPI ops for allgather and allreduce, which do bandwidth-optimal * gathers and reductions and can take advantage of hardware-optimized * communication libraries through the MPI implementation. * * The primary logic of the allreduce and allgather are in RingAllgather() and * RingAllreduce(). The background thread which facilitates MPI operations is * run in BackgroundThreadLoop(). The provided MPI ops are: * – MPIInit: * Initialize MPI on a given device (CPU or GPU). * Should only be run on a single device in every process. * – MPISize: * Get the number of MPI processes in the global communicator. * – MPIRank: * Get the rank of the current MPI process in the global communicator. * – MPILocalRank: * Get the local rank of the current MPI process within its node. * – MPIAllreduce: * Perform an allreduce on a Tensor, returning the sum * across all MPI processes in the global communicator. * – MPIAllgather: * Perform an allgather on a Tensor, returning the concatenation of * the tensor on the first dimension across all MPI processes in the * global communicator. * */ template using StatusOr = se::port::StatusOr; using CPUDevice = Eigen::ThreadPoolDevice; using GPUDevice = Eigen::GpuDevice; namespace tensorflow { namespace contrib { namespace mpi { // Make sure template specializations are generated in the ring.cu.cc and the // ring.cc file, not in this file. extern template Status RingAllreduce(OpKernelContext*, const Tensor*, Tensor*, Tensor*); extern template Status RingAllreduce(OpKernelContext*, const Tensor*, Tensor*, Tensor*); extern template Status RingAllreduce(OpKernelContext*, const Tensor*, Tensor*, Tensor*); extern template Status RingAllgather(OpKernelContext*, const Tensor*, const std::vector&, Tensor*); extern template Status RingAllgather( OpKernelContext*, const Tensor*, const std::vector&, Tensor*); extern template Status RingAllgather( OpKernelContext*, const Tensor*, const std::vector&, Tensor*); extern template Status RingAllreduce(OpKernelContext*, const Tensor*, Tensor*, Tensor*); extern template Status RingAllreduce(OpKernelContext*, const Tensor*, Tensor*, Tensor*); extern template Status RingAllreduce(OpKernelContext*, const Tensor*, Tensor*, Tensor*); extern template Status RingAllgather(OpKernelContext*, const Tensor*, const std::vector&, Tensor*); extern template Status RingAllgather( OpKernelContext*, const Tensor*, const std::vector&, Tensor*); extern template Status RingAllgather( OpKernelContext*, const Tensor*, const std::vector&, Tensor*); namespace { // Return true if the templated type is GPUDevice, otherwise false. template bool IsGPUDevice(); template <> bool IsGPUDevice() { return true; }; template <> bool IsGPUDevice() { return false; }; // A callback to call after the MPI communication completes. Since the // allreduce and allgather ops are asynchronous, this callback is what resumes // computation after the reduction is completed. typedef std::function)> CommunicationDoneCallback; struct CollectiveOpRecord { // The rank performing this piece of the op int rank; // The name of the op/tensor to be reduced std::string name; // The op's kernel context OpKernelContext* context; // Data type of the op DataType dtype; // The input tensor const Tensor* in_t; // Allgather: Vector of per-rank first-dimension sizes std::vector sizes_vec; // The temp tensor for intermediate results Tensor temp_t; // The output tensor Tensor* out_t; // Whether to run this op on the gpu bool on_gpu; // The callback to call after the op has completed CommunicationDoneCallback callback; }; // Table storing Tensors to be reduced, keyed by unique name. // This table contains everything necessary to do the reduction typedef std::unordered_map TensorTable; // Table for storing Tensor metadata on rank zero. This is used for error // checking and size calculations, as well as determining when a reduction is // ready to be done (when all nodes are ready to do it). typedef std::unordered_map > MessageTable; // The global state required for the MPI ops. // // MPI is a library that stores a lot of global per-program state and often // requires running on a single thread. As a result, we have to have a single // background thread responsible for all MPI operations, and communicate with // that background thread through global state. struct MPIGlobalState { // An atomic boolean which is set to true when MPI is initialized. // This ensures that MPI_Init is never called twice. std::atomic_flag initialized_flag = ATOMIC_FLAG_INIT; // Condition variable to wait for initialization condition_variable cv; // Whether MPI_Init has been completed on the background thread. bool initialization_done = false; // Whether MPI_Init succeeded on the background thread. Status init_status; // A mutex that needs to be used whenever MPI operations touch // shared structures. mutex mu; // Tensors waiting to be allreduced or allgathered. TensorTable tensor_table; // Queue of MPI requests waiting to be sent to the coordinator node. std::queue message_queue; // Background thread running MPI communication. std::thread background_thread; // Whether the background thread should shutdown. bool shut_down = false; // Only exists on the coordinator node (rank zero). Maintains a count of // how many nodes are ready to allreduce every tensor (keyed by tensor // name). std::unique_ptr message_table; // The MPI rank, local rank, and size. int rank = 0; int local_rank = 0; int size = 1; // The device that MPI was initialized on. (-1 for no GPU) int device = -1; // The CUDA stream used for data transfers and within-allreduce operations. // A naive implementation would use the TensorFlow StreamExecutor CUDA // stream. However, the allreduce and allgather require doing memory copies // and kernel executions (for accumulation of values on the GPU). However, // the subsequent operations must wait for those operations to complete, // otherwise MPI (which uses its own stream internally) will begin the data // transfers before the CUDA calls are complete. In order to wait for those // CUDA operations, if we were using the TensorFlow stream, we would have // to synchronize that stream; however, other TensorFlow threads may be // submitting more work to that stream, so synchronizing on it can cause // the allreduce to be delayed, waiting for compute totally unrelated to it // in other parts of the graph. Overlaying memory transfers and compute // during backpropagation is crucial for good performance, so we cannot use // the TensorFlow stream, and must use our own stream. #if GOOGLE_CUDA cudaStream_t stream; std::atomic_flag stream_created_flag = ATOMIC_FLAG_INIT; #endif ~MPIGlobalState() { // Make sure that the destructor of the background thread is safe to // call. If a thread is still joinable (not detached or complete) its // destructor cannot be called. if (background_thread.joinable()) { shut_down = true; background_thread.join(); } } }; // All the MPI state that must be stored globally per-process. static MPIGlobalState mpi_global; // For clarify in argument lists. #define RANK_ZERO 0 // A tag used for all coordinator messaging. #define TAG_NOTIFY 1 // Store the MPIRequest for a name, and return whether the total count of // MPIRequests for that tensor is now equal to the MPI size (and thus we are // ready to reduce the tensor). bool IncrementTensorCount(std::unique_ptr& message_table, MPIRequest msg, int mpi_size) { auto name = msg.tensor_name(); auto table_iter = message_table->find(name); if (table_iter == message_table->end()) { message_table->emplace(name, std::vector({msg})); table_iter = message_table->find(name); } else { table_iter->second.push_back(msg); } int count = table_iter->second.size(); return count == mpi_size; } // Once a tensor is ready to be reduced, the coordinator sends an MPIResponse // instructing all ranks to start the reduction to all ranks. The MPIResponse // also contains error messages in case the submitted MPIRequests were not // valid (for example, contained mismatched shapes or types). // // Constructing the MPIResponse, thus, requires a whole lot of error checking. MPIResponse ConstructMPIResponse(std::unique_ptr& message_table, std::string name) { bool error = false; auto it = message_table->find(name); assert(it != message_table->end()); std::vector requests = it->second; assert(requests.size() > 0); std::ostringstream error_message_stream; // Check that all data types being reduced or gathered are identical auto data_type = requests[0].tensor_type(); for (unsigned int i = 1; i < requests.size(); i++) { auto request_type = requests[i].tensor_type(); if (data_type != request_type) { error = true; error_message_stream << "Mismatched data types: One rank had type " << DataType_Name(data_type) << ", but another rank had type " << DataType_Name(request_type) << "."; break; } } // Check that all requested operations are the same auto message_type = requests[0].request_type(); for (unsigned int i = 1; i < requests.size(); i++) { if (error) { break; } auto request_type = requests[i].request_type(); if (message_type != request_type) { error = true; error_message_stream << "Mismatched MPI operations: One rank did an " << message_type << ", but another rank did an " << request_type << "."; break; } } // If we are doing an allreduce, check that all tensor shapes // are identical if (message_type == MPIRequest::ALLREDUCE) { TensorShape tensor_shape = requests[0].tensor_shape(); for (unsigned int i = 1; i < requests.size(); i++) { if (error) { break; } TensorShape request_shape = requests[i].tensor_shape(); if (tensor_shape != request_shape) { error = true; error_message_stream << "Mismatched allreduce tensor shapes: " << "One rank reduced a tensor of shape " << tensor_shape.DebugString() << ", but another rank sent a tensor of shape " << request_shape.DebugString() << "."; break; } } } // If we are doing an allgather, make sure all but the first dimension are // the same. The first dimension may be different and the output tensor is // the sum of the first dimension. Collect the sizes by rank. if (message_type == MPIRequest::ALLGATHER) { TensorShape tensor_shape = requests[0].tensor_shape(); if (tensor_shape.dims() == 0) { error = true; error_message_stream << "Rank zero tried to gather a rank-zero tensor."; } for (unsigned int i = 1; i < requests.size(); i++) { if (error) { break; } TensorShape request_shape = requests[i].tensor_shape(); if (tensor_shape.dims() != request_shape.dims()) { error = true; error_message_stream << "Mismatched allgather tensor shapes: " << "One rank gathered a tensor of rank " << tensor_shape.dims() << ", but another rank sent a tensor of rank " << request_shape.dims() << "."; break; } for (unsigned int dim = 1; dim < tensor_shape.dims(); dim++) { if (tensor_shape.dim_size(dim) != request_shape.dim_size(dim)) { error = true; error_message_stream << "Mismatched allgather tensor shapes: " << "One rank gathered a tensor with dimension " << dim << " equal to " << tensor_shape.dim_size(dim) << ", but another rank sent a tensor with dimension " << dim << " equal to " << request_shape.dim_size(dim) << "."; break; } } } } MPIResponse response; response.set_tensor_name(name); if (error) { std::string error_message = error_message_stream.str(); response.set_response_type(MPIResponse::ERROR); response.set_error_message(error_message); } else { auto response_type = MPIResponse::ERROR; if (message_type == MPIRequest::ALLREDUCE) { response_type = MPIResponse::ALLREDUCE; } else { response_type = MPIResponse::ALLGATHER; } response.set_response_type(response_type); } // Clear all queued up requests for this name. They are now taken care of // by the constructed MPI response. message_table->erase(it); return response; } // Process an MPIResponse by doing a reduction, a gather, or raising an error. void PerformCollectiveOp(TensorTable& tensor_table, MPIResponse response) { OpKernelContext* context; const Tensor* input_tensor; std::vector sizes_vec; Tensor temp_tensor; Tensor* output_tensor; CommunicationDoneCallback callback; bool on_gpu; { // Lock on the tensor table. mutex_lock guard(mpi_global.mu); // We should never fail at finding this key in the tensor table. auto name = response.tensor_name(); auto iter = tensor_table.find(name); assert(iter != tensor_table.end()); assert(response.response_type() == MPIResponse::ALLREDUCE || response.response_type() == MPIResponse::ALLGATHER || response.response_type() == MPIResponse::ERROR); CollectiveOpRecord record = iter->second; context = record.context; input_tensor = record.in_t; sizes_vec = record.sizes_vec; temp_tensor = record.temp_t; output_tensor = record.out_t; on_gpu = record.on_gpu; callback = record.callback; // Clear the tensor table of this tensor and its callbacks; the rest of // this function takes care of it. tensor_table.erase(iter); } // Use CPUDevice instead of GPUDevice if no CUDA, to ensure we don't // link to non-existent symbols. #if GOOGLE_CUDA #define GPU_DEVICE_IF_CUDA GPUDevice #else #define GPU_DEVICE_IF_CUDA CPUDevice #endif Status status; auto dtype = input_tensor->dtype(); if (response.response_type() == MPIResponse::ALLGATHER) { if (dtype == DT_FLOAT) { status = on_gpu ? RingAllgather( context, input_tensor, sizes_vec, output_tensor) : RingAllgather( context, input_tensor, sizes_vec, output_tensor); } else if (dtype == DT_INT32) { status = on_gpu ? RingAllgather( context, input_tensor, sizes_vec, output_tensor) : RingAllgather(context, input_tensor, sizes_vec, output_tensor); } else if (dtype == DT_INT64) { status = on_gpu ? RingAllgather( context, input_tensor, sizes_vec, output_tensor) : RingAllgather( context, input_tensor, sizes_vec, output_tensor); } else { status = errors::Unknown("Invalid tensor type for MPI allgather."); } } else if (response.response_type() == MPIResponse::ALLREDUCE) { if (dtype == DT_FLOAT) { status = on_gpu ? RingAllreduce( context, input_tensor, &temp_tensor, output_tensor) : RingAllreduce( context, input_tensor, &temp_tensor, output_tensor); } else if (dtype == DT_INT32) { status = on_gpu ? RingAllreduce( context, input_tensor, &temp_tensor, output_tensor) : RingAllreduce( context, input_tensor, &temp_tensor, output_tensor); } else if (dtype == DT_INT64) { status = on_gpu ? RingAllreduce( context, input_tensor, &temp_tensor, output_tensor) : RingAllreduce( context, input_tensor, &temp_tensor, output_tensor); } else { status = errors::Unknown("Invalid tensor type for MPI allreduce."); } } else if (response.response_type() == MPIResponse::ERROR) { status = errors::FailedPrecondition(response.error_message()); } if (status.ok()) { callback(StatusOr(*output_tensor)); } else { callback(StatusOr(status)); } } // The MPI background thread loop coordinates all the MPI processes and the // tensor reductions. The design of the communicator mechanism is limited by a // few considerations: // // 1. Some MPI implementations require all MPI calls to happen from a // single thread. Since TensorFlow may use several threads for graph // processing, this means we must have our own dedicated thread for // dealing with MPI. // 2. We want to gracefully handle errors, when MPI processes do not // properly agree upon what should happen (such as mismatched types or // shapes). To do so requires the MPI processes to know about the shapes // and types of the relevant tensors on the other processes. // 3. The MPI reductions and gathers should be able to happen in parallel // with other ongoing operations. Since MPI uses an internal // (inaccessible) GPU stream separate from the TF GPUDevice streams, we // cannot explicitly synchronize memcpys or kernels with it. As a result, // MPIAllreduce and MPIAllgather must be AsyncOpKernels to ensure proper // ordering of memcpys and kernels with respect to TF streams. // 4. NOTE: We cannot guarantee that all the MPI processes reduce their // tensors in the same order. Thus, there must be a way to ensure the // reduction memcpys and kernels occur for correct tensors across all // ranks at the same time. We choose to use a coordinator (rank ID 0) to // gather and trigger the reduction operations that are ready to execute. // // The coordinator currently follows a master-worker paradigm. Rank zero acts // as the master (the "coordinator"), whereas all other ranks are simply // workers. Each rank runs its own background thread which progresses in ticks. // In each tick, the following actions happen: // // a) The workers send any available MPIRequests to the coordinator. These // MPIRequests indicate what the worker would like to do (i.e. which // tensor they would like to gather or reduce, as well as their shape and // type). They repeat this for every tensor that they would like to // operate on after that tensor's collective op has executed ComputeAsync. // // b) The workers send an empty "DONE" message to the coordinator to // indicate that there are no more tensors they wish to operate on. // // c) The coordinator receives the MPIRequests from the workers, as well // as from its own TensorFlow ops, and stores them in a request table. The // coordinator continues to receive MPIRequest messages until it has // received MPI_SIZE number of empty "DONE" messages. // // d) The coordinator finds all tensors that are ready to be reduced, // gathered, or all operations that result in an error. For each of those, // it sends an MPIResponse to all the workers. When no more MPIResponses // are available, it sends a "DONE" response to the workers. If the // process is being shutdown, it instead sends a "SHUTDOWN" response. // // e) The workers listen for MPIResponse messages, processing each one by // doing the required reduce or gather, until they receive a "DONE" // response from the coordinator. At that point, the tick ends. // If instead of "DONE" they receive "SHUTDOWN", they exit their // background loop. // TODO: Use the global mpi_global state variable instead of a local one void BackgroundThreadLoop() { #if GOOGLE_CUDA // Set the device, so that this thread uses the same GPU context as the // calling thread. // TODO: Ensure that this is operating correctly. The background thread // needs to be able to control all GPUs that the rank has access to, and // might be more than 1 GPU. Tensors could be resident in any of the // GPUs, so the background thread's accumulate and copy kernels might need // to correctly set the device and it might be necessary for the background // thread to manage multiple streams. cudaSetDevice(mpi_global.device); cudaStreamCreate(&mpi_global.stream); #endif // Initialize MPI. This must happen on the background thread, since not all // MPI implementations support being called from multiple threads. auto init_result = MPI_Init(NULL, NULL); if (init_result != MPI_SUCCESS) { mpi_global.init_status = errors::Unknown("Could not initialize MPI; MPI_Init() failed."); mpi_global.initialization_done = true; mpi_global.cv.notify_all(); return; } else { mpi_global.init_status = Status::OK(); } // Get MPI rank to determine if we are rank zero. int rank; MPI_Comm_rank(MPI_COMM_WORLD, &rank); bool is_coordinator = rank == 0; // Get MPI size to determine how many tensors to wait for before reducing. int size; MPI_Comm_size(MPI_COMM_WORLD, &size); // Determine local rank by querying the local communicator. MPI_Comm local_comm; MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &local_comm); int local_rank; MPI_Comm_rank(local_comm, &local_rank); mpi_global.rank = rank; mpi_global.local_rank = local_rank; mpi_global.size = size; mpi_global.initialization_done = true; // Notify calling thread that initialization is complete mpi_global.cv.notify_all(); // TODO: MOVE MESSAGE TABLE INITIALIZATION TO LIBRARY LOAD! // Initialize the tensor count table. No tensors are available yet. if (is_coordinator) { mpi_global.message_table = std::unique_ptr(new MessageTable()); } // The coordinator sends a SHUTDOWN message to trigger shutdown. bool should_shut_down = false; do { // TODO: Eliminate the need for thread sleep by making all activity // depend on other activity (e.g. condition or MPI waits). std::this_thread::sleep_for(std::chrono::milliseconds(1)); // Copy the data structures from global state under this lock. // However, don't keep the lock for the rest of the loop, so that // enqueued stream callbacks can continue. std::queue message_queue; { mutex_lock guard(mpi_global.mu); while (!mpi_global.message_queue.empty()) { MPIRequest message = mpi_global.message_queue.front(); mpi_global.message_queue.pop(); message_queue.push(message); } } // Collect all tensors that are ready to be reduced. Record them in the // tensor count table (rank zero) or send them to rank zero to be // recorded (everyone else). std::vector ready_to_reduce; while (!message_queue.empty()) { // Pop the first available message message MPIRequest message = message_queue.front(); message_queue.pop(); if (is_coordinator) { bool reduce = IncrementTensorCount(mpi_global.message_table, message, size); if (reduce) { ready_to_reduce.push_back(message.tensor_name()); } } else { std::string encoded_message; message.SerializeToString(&encoded_message); MPI_Send(encoded_message.c_str(), encoded_message.length() + 1, MPI_BYTE, RANK_ZERO, TAG_NOTIFY, MPI_COMM_WORLD); } } // Rank zero has put all its own tensors in the tensor count table. // Now, it should count all the tensors that are coming from other // ranks at this tick. It should keep getting tensors until it gets a // DONE message from all the other ranks. if (is_coordinator) { // Count of DONE messages. Keep receiving messages until the number // of messages is equal to the number of processes. Initialize to // one since the coordinator is effectively done. int completed_ranks = 1; while (completed_ranks != size) { MPI_Status status; MPI_Probe(MPI_ANY_SOURCE, TAG_NOTIFY, MPI_COMM_WORLD, &status); // Find number of characters in message (including zero byte). int source_rank = status.MPI_SOURCE; int msg_length; MPI_Get_count(&status, MPI_BYTE, &msg_length); // If the length is zero, this is a DONE message. if (msg_length == 0) { completed_ranks++; MPI_Recv(NULL, 0, MPI_BYTE, source_rank, TAG_NOTIFY, MPI_COMM_WORLD, &status); continue; } // Get tensor name from MPI into an std::string. char* buffer = new char[msg_length]; MPI_Recv(buffer, msg_length, MPI_BYTE, source_rank, TAG_NOTIFY, MPI_COMM_WORLD, &status); std::string received_data(buffer); delete[] buffer; MPIRequest received_message; received_message.ParseFromString(received_data); auto received_name = received_message.tensor_name(); bool reduce = IncrementTensorCount(mpi_global.message_table, received_message, size); if (reduce) { ready_to_reduce.push_back(received_name); } } // At this point, rank zero should have a fully updated tensor // count table and should know all the tensors that need to be // reduced or gathered, and everyone else should have sent all // their information to rank zero. We can now do reductions and // gathers; rank zero will choose which ones and in what order, // and will notify the other ranks before doing each reduction. for (int i = 0; i < ready_to_reduce.size(); i++) { // Notify all nodes which tensor we'd like to reduce now auto name = ready_to_reduce[i]; MPIResponse response = ConstructMPIResponse(mpi_global.message_table, name); std::string encoded_response; response.SerializeToString(&encoded_response); for (int r = 1; r < size; r++) { MPI_Send(encoded_response.c_str(), encoded_response.length() + 1, MPI_BYTE, r, TAG_NOTIFY, MPI_COMM_WORLD); } // Perform the reduction. All nodes should end up performing // the same reduction. PerformCollectiveOp(mpi_global.tensor_table, response); } // Notify all nodes that we are done with the reductions for this // tick. MPIResponse done_response; should_shut_down = mpi_global.shut_down; done_response.set_response_type( mpi_global.shut_down ? MPIResponse::SHUTDOWN : MPIResponse::DONE); std::string encoded_response; done_response.SerializeToString(&encoded_response); for (int r = 1; r < size; r++) { MPI_Send(encoded_response.c_str(), encoded_response.length() + 1, MPI_BYTE, r, TAG_NOTIFY, MPI_COMM_WORLD); } } else { // Notify the coordinator that this node is done sending messages. // A DONE message is encoded as a zero-length message. MPI_Send(NULL, 0, MPI_BYTE, RANK_ZERO, TAG_NOTIFY, MPI_COMM_WORLD); // Receive names for tensors to reduce from rank zero. Once we // receive a empty DONE message, stop waiting for more names. while (true) { MPI_Status status; MPI_Probe(0, TAG_NOTIFY, MPI_COMM_WORLD, &status); // Find number of characters in message (including zero byte). int msg_length; MPI_Get_count(&status, MPI_BYTE, &msg_length); // Get tensor name from MPI into an std::string. char* buffer = new char[msg_length]; MPI_Recv(buffer, msg_length, MPI_BYTE, 0, TAG_NOTIFY, MPI_COMM_WORLD, &status); std::string received_message(buffer); delete[] buffer; MPIResponse response; response.ParseFromString(received_message); if (response.response_type() == MPIResponse::DONE) { // No more messages this tick break; } else if (response.response_type() == MPIResponse::SHUTDOWN) { // No more messages this tick, and the background thread // should shut down should_shut_down = true; break; } else { // Process the current message PerformCollectiveOp(mpi_global.tensor_table, response); } } } } while (!should_shut_down); MPI_Finalize(); } // Initialize MPI and start the MPI background thread. Ensure that this is // only done once no matter how many times this function is called. Status InitializeMPIOnce(bool gpu) { // Ensure MPI is only initialized once. if (mpi_global.initialized_flag.test_and_set()) return mpi_global.init_status; mpi_global.device = -1; #if GOOGLE_CUDA if (gpu) { cudaGetDevice(&mpi_global.device); } #endif // Start the MPI background thread, which assumes MPI is initialized // TODO: Change this to a Tensorflow thread mpi_global.background_thread = std::thread(BackgroundThreadLoop); // Wait to ensure that the background thread has finished initializing MPI mutex_lock guard(mpi_global.mu); mpi_global.cv.wait(guard); if (!mpi_global.initialization_done) { mpi_global.init_status = errors::Unknown("Failed to wait for MPI initialization."); } return mpi_global.init_status; } // Check that MPI is initialized. Status IsMPIInitialized() { if (!mpi_global.initialization_done) { return errors::FailedPrecondition( "MPI has not been initialized; use tf.contrib.mpi.Session."); } return Status::OK(); } // This function (called from the callback set up in MPIAll*Op::ComputeAsync) // only adds the op's record into the local op queue (to track the op's // progress), and sends a message to the coordinator indicating that this rank // is ready to begin. The MPI background thread will handle the MPI message. void EnqueueTensorCollective(CollectiveOpRecord record, MPIRequest::RequestType rtype) { const Tensor* input_tensor = record.in_t; MPIRequest message; message.set_request_rank(record.rank); message.set_tensor_name(record.name); message.set_tensor_type(record.dtype); message.set_request_type(rtype); input_tensor->shape().AsProto(message.mutable_tensor_shape()); mutex_lock guard(mpi_global.mu); mpi_global.tensor_table.emplace(record.name, record); mpi_global.message_queue.push(message); } } // namespace #if GOOGLE_CUDA cudaStream_t CudaStreamForMPI() { return mpi_global.stream; } #endif // Op to initialize MPI in the current process. The settings used in the // configuration are the same that must be used for all future MPI ops. template class MPIInitOp : public OpKernel { public: explicit MPIInitOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { bool on_gpu = IsGPUDevice(); OP_REQUIRES_OK(context, InitializeMPIOnce(on_gpu)); } }; REGISTER_KERNEL_BUILDER(Name("MPIInit").Device(DEVICE_CPU), MPIInitOp); #if GOOGLE_CUDA REGISTER_KERNEL_BUILDER(Name("MPIInit").Device(DEVICE_GPU), MPIInitOp); #endif REGISTER_OP("MPIInit").Doc(R"doc( Initialize MPI for the current process. If this is run on a GPU, then that GPU must be used for all future MPI operations. If it is run on CPU, then all future MPI operations must also run on CPU. )doc"); // Op to get the current MPI Size. template class MPISizeOp : public OpKernel { public: explicit MPISizeOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { OP_REQUIRES_OK(context, IsMPIInitialized()); // Write integer to output tensor Tensor* output; OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({}), &output)); auto flat = output->flat(); flat(0) = mpi_global.size; } }; REGISTER_KERNEL_BUILDER(Name("MPISize").Device(DEVICE_CPU), MPISizeOp); #if GOOGLE_CUDA REGISTER_KERNEL_BUILDER(Name("MPISize").Device(DEVICE_GPU).HostMemory("size"), MPISizeOp); #endif REGISTER_OP("MPISize") .Output("size: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Scalar()); return Status::OK(); }) .Doc(R"doc( Returns the number of running MPI processes. More precisely, returns the number of MPI processes in the group associated with the MPI_COMM_WORLD communicator. size: Size of the MPI group. )doc"); // Op to get the current MPI Rank. template class MPIRankOp : public OpKernel { public: explicit MPIRankOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { OP_REQUIRES_OK(context, IsMPIInitialized()); // Write integer to output tensor Tensor* output; OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({}), &output)); auto flat = output->flat(); flat(0) = mpi_global.rank; } }; REGISTER_KERNEL_BUILDER(Name("MPIRank").Device(DEVICE_CPU), MPIRankOp); #if GOOGLE_CUDA REGISTER_KERNEL_BUILDER(Name("MPIRank").Device(DEVICE_GPU).HostMemory("rank"), MPIRankOp); #endif REGISTER_OP("MPIRank") .Output("rank: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Scalar()); return Status::OK(); }) .Doc(R"doc( Returns the index of the current process in the MPI group. More precisely, returns the rank of the calling process in the MPI_COMM_WORLD communicator. rank: Rank of the calling process. )doc"); // Op to get the current local MPI Rank. template class MPILocalRankOp : public OpKernel { public: explicit MPILocalRankOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { OP_REQUIRES_OK(context, IsMPIInitialized()); // Write integer to output tensor Tensor* output; OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({}), &output)); auto flat = output->flat(); flat(0) = mpi_global.local_rank; } }; REGISTER_KERNEL_BUILDER(Name("MPILocalRank").Device(DEVICE_CPU), MPILocalRankOp); #if GOOGLE_CUDA REGISTER_KERNEL_BUILDER( Name("MPILocalRank").Device(DEVICE_GPU).HostMemory("rank"), MPILocalRankOp); #endif REGISTER_OP("MPILocalRank") .Output("rank: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Scalar()); return Status::OK(); }) .Doc(R"doc( Returns the index of the current process in the node it is on. More precisely, returns the rank of the calling process in communicator that only spans the MPI processes running on that node. rank: Rank of the calling process on the node it is on. )doc"); template class MPIAllreduceOp : public AsyncOpKernel { public: explicit MPIAllreduceOp(OpKernelConstruction* context) : AsyncOpKernel(context) {} // Although this op is handled asynchronously, the ComputeAsync call is // very inexpensive. It only sets up a CollectiveOpRecord and places it // in the table for the background thread to handle. Thus, we do not need // a TF pool thread to perform the op. bool IsExpensive() override { return false; } void ComputeAsync(OpKernelContext* context, DoneCallback done) override { OP_REQUIRES_OK_ASYNC(context, IsMPIInitialized(), done); const Tensor* input_tensor = &context->input(0); Tensor* output_tensor; OP_REQUIRES_OK_ASYNC( context, context->allocate_output(0, input_tensor->shape(), &output_tensor), done); // Record allocated on stack so op can fail without memory leak CollectiveOpRecord record; record.name = name(); record.context = context; record.in_t = input_tensor; record.out_t = output_tensor; record.on_gpu = IsGPUDevice(); record.dtype = input_tensor->dtype(); const size_t temp_size = (input_tensor->NumElements() + mpi_global.size - 1) / mpi_global.size; TensorShape temp_shape; temp_shape.AddDim(temp_size); OP_REQUIRES_OK_ASYNC(context, context->allocate_temp(input_tensor->dtype(), temp_shape, &record.temp_t), done); auto allreduce_done_callback = [done, context](StatusOr status) { context->SetStatus(status.status()); done(); }; record.callback = allreduce_done_callback; auto allreduce_launch_callback = [record] { EnqueueTensorCollective(record, MPIRequest::ALLREDUCE); }; // If we are on a CPU, our device context will be null and we can't // get a stream to enqueue this on. On a CPU this op is called when the // data is already available, so we can just immediately do the // allreduce; we don't have to wait for the data to get populated. #if GOOGLE_CUDA auto device_context = context->op_device_context(); if (device_context == nullptr) { allreduce_launch_callback(); } else { auto stream = device_context->stream(); stream->ThenDoHostCallback(allreduce_launch_callback); } #else allreduce_launch_callback(); #endif } }; REGISTER_KERNEL_BUILDER(Name("MPIAllreduce").Device(DEVICE_CPU), MPIAllreduceOp); #if GOOGLE_CUDA REGISTER_KERNEL_BUILDER(Name("MPIAllreduce").Device(DEVICE_GPU), MPIAllreduceOp); #endif REGISTER_OP("MPIAllreduce") .Attr("T: {int32, int64, float32}") .Input("tensor: T") .Output("sum: T") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->input(0)); return Status::OK(); }) .Doc(R"doc( Perform an MPI Allreduce on a tensor. All other processes that do a reduction on a tensor with the same name must have the same dimension for that tensor. Tensors are reduced with other tensors that have the same node name for the allreduce. Arguments tensor: A tensor to reduce. Output sum: A tensor with the same shape as `tensor`, summed across all MPI processes. )doc"); template class MPIAllgatherOp : public AsyncOpKernel { public: explicit MPIAllgatherOp(OpKernelConstruction* context) : AsyncOpKernel(context) {} // Although this op is handled asynchronously, the ComputeAsync call is // very inexpensive. It only sets up a CollectiveOpRecord and places it // in the table for the background thread to handle. Thus, we do not need // a TF pool thread to perform the op. bool IsExpensive() override { return false; } void ComputeAsync(OpKernelContext* context, DoneCallback done) override { OP_REQUIRES_OK_ASYNC(context, IsMPIInitialized(), done); const Tensor* input_tensor = &context->input(0); const Tensor* sizing_tensor = &context->input(1); // Record allocated on stack so op can fail without memory leak CollectiveOpRecord record; record.name = name(); record.context = context; record.in_t = input_tensor; record.on_gpu = IsGPUDevice(); // Construct the output size from the sizing tensor size_t output_first_dim = 0; if (sizing_tensor->shape().dims() == 0) { // 0-dim sizing_tensor implies that the op is just gathering // a single element from each rank output_first_dim = mpi_global.size; for (int i = 0; i < mpi_global.size; i++) { record.sizes_vec.push_back(1); } } else { // Collect the total output tensor sizing from the sizing tensor // NOTE: The sizing tensor is forced to be placed on the CPU by // declaring the input as HostMemory, so it is valid to read it here. const int64* sizing_array = (const int64*)sizing_tensor->tensor_data().data(); for (int i = 0; i < mpi_global.size; i++) { record.sizes_vec.push_back(sizing_array[i]); output_first_dim += sizing_array[i]; } } TensorShape output_shape; output_shape.AddDim(output_first_dim); for (int i = 1; i < input_tensor->shape().dims(); i++) { output_shape.AddDim(input_tensor->shape().dim_size(i)); } Tensor* output_tensor; OP_REQUIRES_OK_ASYNC( context, context->allocate_output(0, output_shape, &output_tensor), done); record.out_t = output_tensor; record.dtype = input_tensor->dtype(); auto allgather_done_callback = [done, context](StatusOr status) { context->SetStatus(status.status()); done(); }; record.callback = allgather_done_callback; auto allgather_launch_callback = [record] { EnqueueTensorCollective(record, MPIRequest::ALLGATHER); }; // If we are on a CPU, our device context will be null and we can't // get a stream to enqueue this on. On a CPU this op is called when the // data is already available, so we can just immediately do the // allgather; we don't have to wait for the data to get populated. #if GOOGLE_CUDA auto device_context = context->op_device_context(); if (device_context == nullptr) { allgather_launch_callback(); } else { auto stream = device_context->stream(); stream->ThenDoHostCallback(allgather_launch_callback); } #else allgather_launch_callback(); #endif } }; REGISTER_OP("MPIAllgather") .Attr("T: {int32, int64, float32}") .Attr("S: {int64}") .Input("tensor: T") .Input("sizes: S") .Output("gathered: T") .SetShapeFn([](shape_inference::InferenceContext* c) { shape_inference::ShapeHandle output; TF_RETURN_IF_ERROR( c->ReplaceDim(c->input(0), 0, c->UnknownDim(), &output)); c->set_output(0, output); return Status::OK(); }) .Doc(R"doc( Perform an MPI Allgather on a tensor. All other processes that do a gather on a tensor with the same name must have the same rank for that tensor, and have the same dimension on all but the first dimension. Arguments tensor: A tensor to gather. sizes: A tensor containing the first-dimension sizes of tensors to be gathered from other ranks Output gathered: A tensor with the same shape as `tensor` except for the first dimension, which is the sum of dimensions in `sizes`. )doc"); REGISTER_KERNEL_BUILDER( Name("MPIAllgather").Device(DEVICE_CPU).HostMemory("sizes"), MPIAllgatherOp); #if GOOGLE_CUDA REGISTER_KERNEL_BUILDER( Name("MPIAllgather").Device(DEVICE_GPU).HostMemory("sizes"), MPIAllgatherOp); #endif } // namespace mpi } // namespace contrib } // namespace tensorflow #endif // TENSORFLOW_USE_MPI