/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // Unit test for TFLite Sequential RNN op. #include #include #include #include #include "tensorflow/contrib/lite/interpreter.h" #include "tensorflow/contrib/lite/kernels/register.h" #include "tensorflow/contrib/lite/kernels/test_util.h" #include "tensorflow/contrib/lite/model.h" namespace tflite { namespace { using ::testing::ElementsAreArray; static float rnn_input[] = { 0.23689353, 0.285385, 0.037029743, -0.19858193, -0.27569133, 0.43773448, 0.60379338, 0.35562468, -0.69424844, -0.93421471, -0.87287879, 0.37144363, -0.62476718, 0.23791671, 0.40060222, 0.1356622, -0.99774903, -0.98858172, -0.38952237, -0.47685933, 0.31073618, 0.71511042, -0.63767755, -0.31729108, 0.33468103, 0.75801885, 0.30660987, -0.37354088, 0.77002847, -0.62747043, -0.68572164, 0.0069220066, 0.65791464, 0.35130811, 0.80834007, -0.61777675, -0.21095741, 0.41213346, 0.73784804, 0.094794154, 0.47791874, 0.86496925, -0.53376222, 0.85315156, 0.10288584, 0.86684, -0.011186242, 0.10513687, 0.87825835, 0.59929144, 0.62827742, 0.18899453, 0.31440187, 0.99059987, 0.87170351, -0.35091716, 0.74861872, 0.17831337, 0.2755419, 0.51864719, 0.55084288, 0.58982027, -0.47443086, 0.20875752, -0.058871567, -0.66609079, 0.59098077, 0.73017097, 0.74604273, 0.32882881, -0.17503482, 0.22396147, 0.19379807, 0.29120302, 0.077113032, -0.70331609, 0.15804303, -0.93407321, 0.40182066, 0.036301374, 0.66521823, 0.0300982, -0.7747041, -0.02038002, 0.020698071, -0.90300065, 0.62870288, -0.23068321, 0.27531278, -0.095755219, -0.712036, -0.17384434, -0.50593495, -0.18646687, -0.96508682, 0.43519354, 0.14744234, 0.62589407, 0.1653645, -0.10651493, -0.045277178, 0.99032974, -0.88255352, -0.85147917, 0.28153265, 0.19455957, -0.55479527, -0.56042433, 0.26048636, 0.84702539, 0.47587705, -0.074295521, -0.12287641, 0.70117295, 0.90532446, 0.89782166, 0.79817224, 0.53402734, -0.33286154, 0.073485017, -0.56172788, -0.044897556, 0.89964068, -0.067662835, 0.76863563, 0.93455386, -0.6324693, -0.083922029}; static float rnn_golden_output[] = { 0.496726, 0, 0.965996, 0, 0.0584254, 0, 0, 0.12315, 0, 0, 0.612266, 0.456601, 0, 0.52286, 1.16099, 0.0291232, 0, 0, 0.524901, 0, 0, 0, 0, 1.02116, 0, 1.35762, 0, 0.356909, 0.436415, 0.0355727, 0, 0, 0, 0, 0, 0.262335, 0, 0, 0, 1.33992, 0, 2.9739, 0, 0, 1.31914, 2.66147, 0, 0, 0.942568, 0, 0, 0, 0.025507, 0, 0, 0, 0.321429, 0.569141, 1.25274, 1.57719, 0.8158, 1.21805, 0.586239, 0.25427, 1.04436, 0, 0.630725, 0, 0.133801, 0.210693, 0.363026, 0, 0.533426, 0, 1.25926, 0.722707, 0, 1.22031, 1.30117, 0.495867, 0.222187, 0, 0.72725, 0, 0.767003, 0, 0, 0.147835, 0, 0, 0, 0.608758, 0.469394, 0.00720298, 0.927537, 0, 0.856974, 0.424257, 0, 0, 0.937329, 0, 0, 0, 0.476425, 0, 0.566017, 0.418462, 0.141911, 0.996214, 1.13063, 0, 0.967899, 0, 0, 0, 0.0831304, 0, 0, 1.00378, 0, 0, 0, 1.44818, 1.01768, 0.943891, 0.502745, 0, 0.940135, 0, 0, 0, 0, 0, 0, 2.13243, 0, 0.71208, 0.123918, 1.53907, 1.30225, 1.59644, 0.70222, 0, 0.804329, 0, 0.430576, 0, 0.505872, 0.509603, 0.343448, 0, 0.107756, 0.614544, 1.44549, 1.52311, 0.0454298, 0.300267, 0.562784, 0.395095, 0.228154, 0, 0.675323, 0, 1.70536, 0.766217, 0, 0, 0, 0.735363, 0.0759267, 1.91017, 0.941888, 0, 0, 0, 0, 0, 1.5909, 0, 0, 0, 0, 0.5755, 0, 0.184687, 0, 1.56296, 0.625285, 0, 0, 0, 0, 0, 0.0857888, 0, 0, 0, 0, 0.488383, 0.252786, 0, 0, 0, 1.02817, 1.85665, 0, 0, 0.00981836, 0, 1.06371, 0, 0, 0, 0, 0, 0, 0.290445, 0.316406, 0, 0.304161, 1.25079, 0.0707152, 0, 0.986264, 0.309201, 0, 0, 0, 0, 0, 1.64896, 0.346248, 0, 0.918175, 0.78884, 0.524981, 1.92076, 2.07013, 0.333244, 0.415153, 0.210318, 0, 0, 0, 0, 0, 2.02616, 0, 0.728256, 0.84183, 0.0907453, 0.628881, 3.58099, 1.49974, 0}; static std::initializer_list rnn_weights = { 0.461459, 0.153381, 0.529743, -0.00371218, 0.676267, -0.211346, 0.317493, 0.969689, -0.343251, 0.186423, 0.398151, 0.152399, 0.448504, 0.317662, 0.523556, -0.323514, 0.480877, 0.333113, -0.757714, -0.674487, -0.643585, 0.217766, -0.0251462, 0.79512, -0.595574, -0.422444, 0.371572, -0.452178, -0.556069, -0.482188, -0.685456, -0.727851, 0.841829, 0.551535, -0.232336, 0.729158, -0.00294906, -0.69754, 0.766073, -0.178424, 0.369513, -0.423241, 0.548547, -0.0152023, -0.757482, -0.85491, 0.251331, -0.989183, 0.306261, -0.340716, 0.886103, -0.0726757, -0.723523, -0.784303, 0.0354295, 0.566564, -0.485469, -0.620498, 0.832546, 0.697884, -0.279115, 0.294415, -0.584313, 0.548772, 0.0648819, 0.968726, 0.723834, -0.0080452, -0.350386, -0.272803, 0.115121, -0.412644, -0.824713, -0.992843, -0.592904, -0.417893, 0.863791, -0.423461, -0.147601, -0.770664, -0.479006, 0.654782, 0.587314, -0.639158, 0.816969, -0.337228, 0.659878, 0.73107, 0.754768, -0.337042, 0.0960841, 0.368357, 0.244191, -0.817703, -0.211223, 0.442012, 0.37225, -0.623598, -0.405423, 0.455101, 0.673656, -0.145345, -0.511346, -0.901675, -0.81252, -0.127006, 0.809865, -0.721884, 0.636255, 0.868989, -0.347973, -0.10179, -0.777449, 0.917274, 0.819286, 0.206218, -0.00785118, 0.167141, 0.45872, 0.972934, -0.276798, 0.837861, 0.747958, -0.0151566, -0.330057, -0.469077, 0.277308, 0.415818}; static std::initializer_list rnn_recurrent_weights = { 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1}; static std::initializer_list rnn_bias = { 0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068, -0.23566568, -0.389184, 0.47481549, -0.4791103, 0.29931796, 0.10463274, 0.83918178, 0.37197268, 0.61957061, 0.3956964, -0.37609905}; class UnidirectionalRNNOpModel : public SingleOpModel { public: UnidirectionalRNNOpModel( int batches, int sequence_len, int units, int size, bool time_major, const TensorType& weights = TensorType_FLOAT32, const TensorType& recurrent_weights = TensorType_FLOAT32) : batches_(batches), sequence_len_(sequence_len), units_(units), input_size_(size) { input_ = AddInput(TensorType_FLOAT32); weights_ = AddInput(weights); recurrent_weights_ = AddInput(recurrent_weights); bias_ = AddInput(TensorType_FLOAT32); hidden_state_ = AddInput(TensorType_FLOAT32, true); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, BuiltinOptions_SequenceRNNOptions, CreateSequenceRNNOptions(builder_, time_major, ActivationFunctionType_RELU) .Union()); if (time_major) { BuildInterpreter({{sequence_len_, batches_, input_size_}, {units_, input_size_}, {units_, units_}, {units_}, {batches_, units}}); } else { BuildInterpreter({{batches_, sequence_len_, input_size_}, {units_, input_size_}, {units_, units_}, {units_}, {batches_, units_}}); } } void SetBias(std::initializer_list f) { PopulateTensor(bias_, f); } void SetWeights(std::initializer_list f) { PopulateTensor(weights_, f); } void SetRecurrentWeights(std::initializer_list f) { PopulateTensor(recurrent_weights_, f); } void SetInput(std::initializer_list data) { PopulateTensor(input_, data); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } std::vector GetOutput() { return ExtractVector(output_); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } int sequence_len() { return sequence_len_; } protected: int input_; int weights_; int recurrent_weights_; int bias_; int hidden_state_; int output_; int batches_; int sequence_len_; int units_; int input_size_; }; // The hybrid model has quantized weights and recurrent_weights. class HybridUnidirectionalRNNOpModel : public UnidirectionalRNNOpModel { public: HybridUnidirectionalRNNOpModel(int batches, int sequence_len, int units, int size, bool time_major) : UnidirectionalRNNOpModel(batches, sequence_len, units, size, time_major, TensorType_UINT8, TensorType_UINT8) {} void SetWeights(std::initializer_list f) { SymmetricQuantizeAndPopulate(weights_, f); } void SetRecurrentWeights(std::initializer_list f) { SymmetricQuantizeAndPopulate(recurrent_weights_, f); } }; TEST(UnidirectionalRNNOpTest, BlackBoxTest) { UnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16, /*units=*/16, /*size=*/8, /*time_major=*/false); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); rnn.Invoke(); float* golden_start = rnn_golden_output; float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); std::vector expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected))); } TEST(HybridUnidirectionalRNNOpModelOpTest, BlackBoxTest) { HybridUnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16, /*units=*/16, /*size=*/8, /*time_major=*/false); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); rnn.Invoke(); float* golden_start = rnn_golden_output; float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); std::vector expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, /*max_abs_error=*/0.013))); } TEST(UnidirectionalRNNOpTest, TimeMajorBlackBoxTest) { UnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16, /*units=*/16, /*size=*/8, /*time_major=*/true); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); // The two batches are identical. rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } rnn.Invoke(); std::vector expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); float* golden_batch_end = golden_batch_start + rnn.num_units(); expected.insert(expected.end(), golden_batch_start, golden_batch_end); expected.insert(expected.end(), golden_batch_start, golden_batch_end); } EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected))); } TEST(HybridUnidirectionalRNNOpModelOpTest, TimeMajorBlackBoxTest) { HybridUnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16, /*units=*/16, /*size=*/8, /*time_major=*/true); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); // The two batches are identical. rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } rnn.Invoke(); std::vector expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); float* golden_batch_end = golden_batch_start + rnn.num_units(); expected.insert(expected.end(), golden_batch_start, golden_batch_end); expected.insert(expected.end(), golden_batch_start, golden_batch_end); } EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, /*max_abs_error=*/0.013))); } } // namespace } // namespace tflite int main(int argc, char** argv) { // On Linux, add: tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }