/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/contrib/lite/c/builtin_op_data.h" #include "tensorflow/contrib/lite/c/c_api_internal.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/contrib/lite/kernels/internal/quantization_util.h" #include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/contrib/lite/kernels/internal/tensor.h" #include "tensorflow/contrib/lite/kernels/kernel_util.h" #include "tensorflow/contrib/lite/kernels/op_macros.h" namespace tflite { namespace ops { namespace builtin { namespace sub { // This file has three implementation of Sub. enum KernelType { kReference, kGenericOptimized, // Neon-free kNeonOptimized, }; constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; data->requires_broadcast = false; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_EQ(context, input1->type, input2->type); output->type = input2->type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); } template void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params, const OpData* data, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output) { #define TF_LITE_SUB(type, opname, data_type) \ data_type output_activation_min, output_activation_max; \ CalculateActivationRange(params->activation, &output_activation_min, \ &output_activation_max); \ tflite::ArithmeticParams op_params; \ SetActivationParams(output_activation_min, output_activation_max, \ &op_params); \ type::opname(op_params, GetTensorShape(input1), \ GetTensorData(input1), GetTensorShape(input2), \ GetTensorData(input2), GetTensorShape(output), \ GetTensorData(output)) if (output->type == kTfLiteInt32) { if (kernel_type == kReference) { if (data->requires_broadcast) { TF_LITE_SUB(reference_ops, BroadcastSub4DSlow, int32_t); } else { TF_LITE_SUB(reference_ops, SubWithActivation, int32_t); } } else { if (data->requires_broadcast) { TF_LITE_SUB(optimized_ops, BroadcastSub4DSlow, int32_t); } else { TF_LITE_SUB(optimized_ops, SubWithActivation, int32_t); } } } else if (output->type == kTfLiteFloat32) { if (kernel_type == kReference) { if (data->requires_broadcast) { TF_LITE_SUB(reference_ops, BroadcastSub4DSlow, float); } else { TF_LITE_SUB(reference_ops, SubWithActivation, float); } } else { if (data->requires_broadcast) { TF_LITE_SUB(optimized_ops, BroadcastSub4DSlow, float); } else { TF_LITE_SUB(optimized_ops, SubWithActivation, float); } } } #undef TF_LITE_SUB } template void EvalQuantized(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params, const OpData* data, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output) { auto input1_offset = -input1->params.zero_point; auto input2_offset = -input2->params.zero_point; auto output_offset = output->params.zero_point; const int left_shift = 20; const double twice_max_input_scale = 2 * std::max(input1->params.scale, input2->params.scale); const double real_input1_multiplier = input1->params.scale / twice_max_input_scale; const double real_input2_multiplier = input2->params.scale / twice_max_input_scale; const double real_output_multiplier = twice_max_input_scale / ((1 << left_shift) * output->params.scale); int32 input1_multiplier; int input1_shift; QuantizeMultiplierSmallerThanOneExp(real_input1_multiplier, &input1_multiplier, &input1_shift); int32 input2_multiplier; int input2_shift; QuantizeMultiplierSmallerThanOneExp(real_input2_multiplier, &input2_multiplier, &input2_shift); int32 output_multiplier; int output_shift; QuantizeMultiplierSmallerThanOneExp(real_output_multiplier, &output_multiplier, &output_shift); int32 output_activation_min, output_activation_max; CalculateActivationRangeUint8(params->activation, output, &output_activation_min, &output_activation_max); #define TF_LITE_SUB(type, opname) \ tflite::ArithmeticParams op_params; \ op_params.left_shift = left_shift; \ op_params.input1_offset = input1_offset; \ op_params.input1_multiplier = input1_multiplier; \ op_params.input1_shift = input1_shift; \ op_params.input2_offset = input2_offset; \ op_params.input2_multiplier = input2_multiplier; \ op_params.input2_shift = input2_shift; \ op_params.output_offset = output_offset; \ op_params.output_multiplier = output_multiplier; \ op_params.output_shift = output_shift; \ SetActivationParams(output_activation_min, output_activation_max, \ &op_params); \ type::opname(op_params, GetTensorShape(input1), \ GetTensorData(input1), GetTensorShape(input2), \ GetTensorData(input2), GetTensorShape(output), \ GetTensorData(output)) // The quantized version of Sub doesn't support activations, so we // always use BroadcastSub. if (kernel_type == kReference) { TF_LITE_SUB(reference_ops, BroadcastSub4DSlow); } else { TF_LITE_SUB(optimized_ops, BroadcastSub4DSlow); } #undef TF_LITE_SUB } template TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast(node->builtin_data); OpData* data = reinterpret_cast(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) { EvalSub(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteUInt8) { EvalQuantized(context, node, params, data, input1, input2, output); } else { context->ReportError( context, "output type %d is not supported, requires float|uint8|int32 types.", output->type); return kTfLiteError; } return kTfLiteOk; } } // namespace sub TfLiteRegistration* Register_SUB_REF() { static TfLiteRegistration r = {sub::Init, sub::Free, sub::Prepare, sub::Eval}; return &r; } TfLiteRegistration* Register_SUB_GENERIC_OPT() { static TfLiteRegistration r = {sub::Init, sub::Free, sub::Prepare, sub::Eval}; return &r; } TfLiteRegistration* Register_SUB_NEON_OPT() { static TfLiteRegistration r = {sub::Init, sub::Free, sub::Prepare, sub::Eval}; return &r; } TfLiteRegistration* Register_SUB() { #ifdef USE_NEON return Register_SUB_NEON_OPT(); #else return Register_SUB_GENERIC_OPT(); #endif } } // namespace builtin } // namespace ops } // namespace tflite