/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_TYPES_H_ #define TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_TYPES_H_ #include #include #include "tensorflow/contrib/lite/kernels/internal/compatibility.h" namespace tflite { enum class FusedActivationFunctionType : uint8 { kNone, kRelu6, kRelu1, kRelu }; enum class PaddingType : uint8 { kNone, kSame, kValid }; struct PaddingValues { int8 width; int8 height; }; // This enumeration allows for non-default formats for the weights array // of a fully-connected operator, allowing the use of special optimized // runtime paths. enum class FullyConnectedWeightsFormat : uint8 { // Default format (flat 2D layout, the inner contiguous dimension // is input_depth, the outer non-contiguous dimension is output_depth) kDefault, // Summary: optimized layout for fast CPU runtime implementation, // aimed specifically at ARM CPUs at the moment, and specialized for // 8-bit quantized layers. // // The use case we're concerned with here is: 8-bit quantization, // large weights matrix that doesn't fit in cache (e.g. 4096x2048 in // a key application that drove this), very small batch size (e.g. 1 -- 4). // // Even with 8-bit quantization of weights, the performance of memory // accesses to the weights can become the dominant issue when // the batch size is small, so each weight value is used in only a few // arithmetic ops, i.e. the fully-connected node has a low arithmetic // intensity. The specific issues that arise are of three kinds: // (1) One may, ideally, max out DRAM bandwidth, i.e. be truly memory // bound. That's the "good" issue to run into. // (2) One may run into sub-optimal pre-fetching: the data hasn't been // prefetched into the cache by the time we need it. // (3) One may run into cache aliasing: multiple values that are // pre-fetched, alias each other in the L1 cache (which typically // has only 4-way set associativity in ARM CPUs) and thus evict // each other before we get to using them. // // The point of this shuffling is to avoid issues (2) and (3) so that // we get as fast as possible given only the hard constraint (1). // This is achieved by turning the difficulty into a solution: the // difficulty, that each value loaded from memory is used only in // one kernel iteration, making this operation memory-intensive, hints at // the solution, of shuffling the weights so that they are stored in the // exact order as the kernel needs to load them, so that the memory // accesses made by the kernel are trivial. This solves (2) because the // trivial memory access pattern allows the CPU's automatic prefetching // to perform very well (no need even for preload instructions), and this // solves (3) because the values being loaded concurrently are now // contiguous in the address space, thus don't alias each other in the cache. // // On ARM, we typically want our kernel to process a 4x16 block of weights // at a time, because: // - 16 is the number of bytes in a NEON register. // - 4 is how many rows we need to handle concurrently in the kernel in // order to have sufficient mutual independence of instructions to // maximize arithmetic throughput. // // Finally, the 'Int8' part in the name refers to the fact that this // weights format has each weights value encoded as a signed int8 value, // even if the data type of the weights buffer is uint8. This is intended // to save runtime kernels the effort to have to XOR the top bit of these // bytes before using them in signed arithmetic, see this file for more // explanations on the 'signed int8 trick' in matrix multiplication kernels: // // tensorflow/contrib/lite/toco/graph_transformations/ensure_uint8_weights_safe_for_fast_int8_kernels.cc // kShuffled4x16Int8, }; // Quantization parameters, determining the mapping of quantized values // to real values (i.e. determining how quantized values are mathematically // interpreted). // // The correspondence is as follows: // // real_value = scale * (quantized_value - zero_point); // // In other words, zero_point designates which quantized value corresponds to // the real 0 value, and scale designates the difference between the real values // corresponding to consecutive quantized values differing by 1. struct QuantizationParams { int32 zero_point = 0; double scale = 0.0; }; template struct Dims { int sizes[N]; int strides[N]; }; class RuntimeShape { public: // Shapes with dimensions up to 4 are stored directly in the structure, while // larger shapes are separately allocated. static constexpr int kMaxSmallSize = 4; RuntimeShape& operator=(RuntimeShape const&) = delete; RuntimeShape() : size_(0) {} explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) { if (dimensions_count > kMaxSmallSize) { dims_pointer_ = new int32[dimensions_count]; } } RuntimeShape(int shape_size, int32 value) : size_(0) { Resize(shape_size); for (int i = 0; i < shape_size; ++i) { SetDim(i, value); } } RuntimeShape(int dimensions_count, const int32* dims_data) : size_(0) { ReplaceWith(dimensions_count, dims_data); } RuntimeShape(const std::initializer_list init_list) : size_(0) { BuildFrom(init_list); } // Avoid using this constructor. We should be able to delete it when C++17 // rolls out. RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) { if (size_ > kMaxSmallSize) { dims_pointer_ = new int32[size_]; } std::memcpy(DimsData(), other.DimsData(), sizeof(int32) * size_); } bool operator==(const RuntimeShape& comp) const { return this->size_ == comp.size_ && std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32)) == 0; } ~RuntimeShape() { if (size_ > kMaxSmallSize) { delete[] dims_pointer_; } } inline int32 DimensionsCount() const { return size_; } inline int32 Dims(int i) const { TFLITE_DCHECK_GE(i, 0); TFLITE_DCHECK_LT(i, size_); return size_ > kMaxSmallSize ? dims_pointer_[i] : dims_[i]; } inline void SetDim(int i, int32 val) { TFLITE_DCHECK_GE(i, 0); TFLITE_DCHECK_LT(i, size_); if (size_ > kMaxSmallSize) { dims_pointer_[i] = val; } else { dims_[i] = val; } } inline int32* DimsData() { return size_ > kMaxSmallSize ? dims_pointer_ : dims_; } inline const int32* DimsData() const { return size_ > kMaxSmallSize ? dims_pointer_ : dims_; } inline void Resize(int dimensions_count) { if (size_ > kMaxSmallSize) { delete[] dims_pointer_; } size_ = dimensions_count; if (dimensions_count > kMaxSmallSize) { dims_pointer_ = new int32[dimensions_count]; } } inline void ReplaceWith(int dimensions_count, const int32* dims_data) { Resize(dimensions_count); int32* dst_dims = DimsData(); std::memcpy(dst_dims, dims_data, dimensions_count * sizeof(int32)); } template inline void BuildFrom(const T& src_iterable) { const int dimensions_count = std::distance(src_iterable.begin(), src_iterable.end()); Resize(dimensions_count); int32* data = DimsData(); for (auto it : src_iterable) { *data = it; ++data; } } // This will probably be factored out. Old code made substantial use of 4-D // shapes, and so this function is used to extend smaller shapes. Note that // (a) as Dims<4>-dependent code is eliminated, the reliance on this should be // reduced, and (b) some kernels are stricly 4-D, but then the shapes of their // inputs should already be 4-D, so this function should not be needed. inline static RuntimeShape ExtendedShape(int new_shape_size, const RuntimeShape& shape) { return RuntimeShape(new_shape_size, shape, 1); } inline void BuildFrom(const std::initializer_list init_list) { BuildFrom>(init_list); } // Returns the total count of elements, that is the size when flattened into a // vector. inline int FlatSize() const { int buffer_size = 1; const int* dims_data = DimsData(); for (int i = 0; i < size_; i++) { const int dim = dims_data[i]; TFLITE_DCHECK_GE(dim, 1); buffer_size *= dim; } return buffer_size; } bool operator!=(const RuntimeShape& comp) const { return !((*this) == comp); } private: // For use only by ExtendedShape(), written to guarantee (return-value) copy // elision in C++17. // This creates a shape padded to the desired size with the specified value. RuntimeShape(int new_shape_size, const RuntimeShape& shape, int pad_value) : size_(0) { TFLITE_CHECK_GE(new_shape_size, shape.DimensionsCount()); TFLITE_CHECK_LE(new_shape_size, kMaxSmallSize); Resize(new_shape_size); const int size_increase = new_shape_size - shape.DimensionsCount(); for (int i = 0; i < size_increase; ++i) { SetDim(i, pad_value); } std::memcpy(DimsData() + size_increase, shape.DimsData(), sizeof(int32) * shape.DimensionsCount()); } int32 size_; union { int32 dims_[kMaxSmallSize]; int32* dims_pointer_; }; }; // Converts inference-style shape to legacy tflite::Dims<4>. inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) { tflite::Dims<4> result; const int dimensions_count = array_shape.DimensionsCount(); TFLITE_CHECK_LE(dimensions_count, 4); int cum_prod = 1; for (int i = 0; i < 4; i++) { const int new_dim = (i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1; result.sizes[i] = new_dim; result.strides[i] = cum_prod; cum_prod *= new_dim; } return result; } // Gets next index to iterate through a multidimensional array. inline bool NextIndex(const int num_dims, const int* dims, int* current) { if (num_dims == 0) { return false; } TFLITE_DCHECK(dims != nullptr); TFLITE_DCHECK(current != nullptr); int carry = 1; for (int idx = num_dims - 1; idx >= 0; --idx) { int current_val = current[idx] + carry; TFLITE_DCHECK_GE(dims[idx], current_val); if (dims[idx] == current_val) { current[idx] = 0; } else { current[idx] = current_val; carry = 0; break; } } return (carry == 0); } // Gets offset of index if reducing on axis. When reducing, the flattened offset // will not change, if the input index changes on the given axis. For example, // if you have a 3D tensor and you are reducing to 2D by eliminating axis 0, // then index (0, 1, 2) and index (1, 1, 2) will map to the same flattened // offset. // TODO(kanlig): uses Dims to represent dimensions. inline size_t ReducedOutputOffset(const int num_dims, const int* dims, const int* index, const int num_axis, const int* axis) { if (num_dims == 0) { return 0; } TFLITE_DCHECK(dims != nullptr); TFLITE_DCHECK(index != nullptr); size_t offset = 0; for (int idx = 0; idx < num_dims; ++idx) { // if we need to skip this axis bool is_axis = false; if (axis != nullptr) { for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx) { if (idx == axis[axis_idx]) { is_axis = true; break; } } } if (!is_axis) { offset = offset * static_cast(dims[idx]) + static_cast(index[idx]); } } return offset; } inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3) { TFLITE_DCHECK(i0 >= 0 && i0 < shape.Dims(0)); TFLITE_DCHECK(i1 >= 0 && i1 < shape.Dims(1)); TFLITE_DCHECK(i2 >= 0 && i2 < shape.Dims(2)); TFLITE_DCHECK(i3 >= 0 && i3 < shape.Dims(3)); const int* dims_data = shape.DimsData(); return ((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3; } inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) { TFLITE_DCHECK(i0 >= 0 && i0 < dims.sizes[0]); TFLITE_DCHECK(i1 >= 0 && i1 < dims.sizes[1]); TFLITE_DCHECK(i2 >= 0 && i2 < dims.sizes[2]); TFLITE_DCHECK(i3 >= 0 && i3 < dims.sizes[3]); return i0 * dims.strides[0] + i1 * dims.strides[1] + i2 * dims.strides[2] + i3 * dims.strides[3]; } inline int Offset(const Dims<4>& dims, int* index) { return Offset(dims, index[0], index[1], index[2], index[3]); } // Get array size, DCHECKing that the dim index is in range. // // Note that this will be phased out with Dims<4>, since RuntimeShape::Dims() // already performs this check. template int ArraySize(const Dims& array, int index) { TFLITE_DCHECK(index >= 0 && index < N); return array.sizes[index]; } // Get common array size, DCHECKing that they all agree. template int MatchingArraySize(const ArrayType1& array1, int index1, const ArrayType2& array2, int index2) { TFLITE_DCHECK_EQ(ArraySize(array1, index1), ArraySize(array2, index2)); return ArraySize(array1, index1); } template int MatchingArraySize(const ArrayType1& array1, int index1, const ArrayType2& array2, int index2, Args... args) { TFLITE_DCHECK_EQ(ArraySize(array1, index1), ArraySize(array2, index2)); return MatchingArraySize(array1, index1, args...); } // Get common shape dim, DCHECKing that they all agree. inline int MatchingDim(const RuntimeShape& shape1, int index1, const RuntimeShape& shape2, int index2) { TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); return shape1.Dims(index1); } template int MatchingDim(const RuntimeShape& shape1, int index1, const RuntimeShape& shape2, int index2, Args... args) { TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); return MatchingDim(shape1, index1, args...); } // Will be phased out with Dims<4>, replaced by RuntimeShape::FlatSize(). template inline int FlatSize(const Dims& dims) { int flat_size = 1; for (int i = 0; i < N; ++i) { flat_size *= dims.sizes[i]; } return flat_size; } // Deprecated. Prefer FlatSize. inline int RequiredBufferSizeForDims(const Dims<4>& dims) { return FlatSize(dims); } // Flat size calculation, checking that dimensions match with one or more other // arrays. inline int MatchingFlatSize(const RuntimeShape& shape, const RuntimeShape& check_shape_0) { TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } return shape.FlatSize(); } inline int MatchingFlatSize(const RuntimeShape& shape, const RuntimeShape& check_shape_0, const RuntimeShape& check_shape_1) { TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } return MatchingFlatSize(shape, check_shape_1); } inline int MatchingFlatSize(const RuntimeShape& shape, const RuntimeShape& check_shape_0, const RuntimeShape& check_shape_1, const RuntimeShape& check_shape_2) { TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } return MatchingFlatSize(shape, check_shape_1, check_shape_2); } inline int MatchingFlatSize(const RuntimeShape& shape, const RuntimeShape& check_shape_0, const RuntimeShape& check_shape_1, const RuntimeShape& check_shape_2, const RuntimeShape& check_shape_3) { TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } return MatchingFlatSize(shape, check_shape_1, check_shape_2, check_shape_3); } // Flat size calculation, checking that dimensions match with one or more other // arrays. template inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0) { for (int i = 0; i < N; ++i) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } return FlatSize(dims); } template inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0, const Dims& check_dims_1) { for (int i = 0; i < N; ++i) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } return MatchingFlatSize(dims, check_dims_1); } template inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0, const Dims& check_dims_1, const Dims& check_dims_2) { for (int i = 0; i < N; ++i) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } return MatchingFlatSize(dims, check_dims_1, check_dims_2); } template inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0, const Dims& check_dims_1, const Dims& check_dims_2, const Dims& check_dims_3) { for (int i = 0; i < N; ++i) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } return MatchingFlatSize(dims, check_dims_1, check_dims_2, check_dims_3); } // Data is required to be contiguous, and so many operators can use either the // full array flat size or the flat size with one dimension skipped (commonly // the depth). template inline int FlatSizeSkipDim(const Dims& dims, int skip_dim) { TFLITE_DCHECK(skip_dim >= 0 && skip_dim < N); int flat_size = 1; for (int i = 0; i < N; ++i) { flat_size *= (i == skip_dim) ? 1 : dims.sizes[i]; } return flat_size; } // A combination of MatchingFlatSize() and FlatSizeSkipDim(). template inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, const Dims& check_dims_0) { for (int i = 0; i < N; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } } return FlatSizeSkipDim(dims, skip_dim); } template inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, const Dims& check_dims_0, const Dims& check_dims_1) { for (int i = 0; i < N; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } } return MatchingFlatSizeSkipDim(dims, skip_dim, check_dims_1); } template inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, const Dims& check_dims_0, const Dims& check_dims_1, const Dims& check_dims_2) { for (int i = 0; i < N; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } } return MatchingFlatSizeSkipDim(dims, skip_dim, check_dims_1, check_dims_2); } template inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, const Dims& check_dims_0, const Dims& check_dims_1, const Dims& check_dims_2, const Dims& check_dims_3) { for (int i = 0; i < N; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); } } return MatchingFlatSizeSkipDim(dims, skip_dim, check_dims_1, check_dims_2, check_dims_3); } // Data is required to be contiguous, and so many operators can use either the // full array flat size or the flat size with one dimension skipped (commonly // the depth). inline int FlatSizeSkipDim(const RuntimeShape& shape, int skip_dim) { const int dims_count = shape.DimensionsCount(); TFLITE_DCHECK(skip_dim >= 0 && skip_dim < dims_count); const auto* dims_data = shape.DimsData(); int flat_size = 1; for (int i = 0; i < dims_count; ++i) { flat_size *= (i == skip_dim) ? 1 : dims_data[i]; } return flat_size; } // A combination of MatchingFlatSize() and FlatSizeSkipDim(). inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, const RuntimeShape& check_shape_0) { const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } } return FlatSizeSkipDim(shape, skip_dim); } inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, const RuntimeShape& check_shape_0, const RuntimeShape& check_shape_1) { const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } } return MatchingFlatSizeSkipDim(shape, skip_dim, check_shape_1); } inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, const RuntimeShape& check_shape_0, const RuntimeShape& check_shape_1, const RuntimeShape& check_shape_2) { const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } } return MatchingFlatSizeSkipDim(shape, skip_dim, check_shape_1, check_shape_2); } inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, const RuntimeShape& check_shape_0, const RuntimeShape& check_shape_1, const RuntimeShape& check_shape_2, const RuntimeShape& check_shape_3) { const int dims_count = shape.DimensionsCount(); for (int i = 0; i < dims_count; ++i) { if (i != skip_dim) { TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); } } return MatchingFlatSizeSkipDim(shape, skip_dim, check_shape_1, check_shape_2, check_shape_3); } template bool IsPackedWithoutStrides(const Dims& dims) { int expected_stride = 1; for (int d = 0; d < N; d++) { if (dims.strides[d] != expected_stride) return false; expected_stride *= dims.sizes[d]; } return true; } template void ComputeStrides(Dims* dims) { dims->strides[0] = 1; for (int d = 1; d < N; d++) { dims->strides[d] = dims->strides[d - 1] * dims->sizes[d - 1]; } } enum class BroadcastableOpCategory : uint8 { kNone, kNonBroadcast, // Matching input shapes. kFirstInputBroadcastsFast, // Fivefold nested loops. kSecondInputBroadcastsFast, // Fivefold nested loops. kGenericBroadcast, // Fall-back. }; // For Add, Sub, Mul ops. struct ArithmeticParams { // Shape dependent / common to data / op types. BroadcastableOpCategory broadcast_category; // uint8 inference params. int32 input1_offset; int32 input2_offset; int32 output_offset; int32 output_multiplier; int output_shift; // Add / Sub, not Mul, uint8 inference params. int left_shift; int32 input1_multiplier; int input1_shift; int32 input2_multiplier; int input2_shift; // uint8, etc, activation params. int32 quantized_activation_min; int32 quantized_activation_max; // float activation params. float float_activation_min; float float_activation_max; // Processed output dimensions. // Let input "a" be the one that broadcasts in the faster-changing dimension. // Then, after coalescing, for shapes {a0, a1, a2, a3, a4} and // {b0, b1, b2, b3, b4}, // broadcast_shape[4] = b0 = a0. // broadcast_shape[3] = b1; a1 = 1. // broadcast_shape[2] = b2 = a2. // broadcast_shape[1] = a3; b3 = 1. // broadcast_shape[0] = b4 = a4. int broadcast_shape[5]; }; template inline void SetActivationParams(T min, T max, ArithmeticParams* params); template <> inline void SetActivationParams(float min, float max, ArithmeticParams* params) { params->float_activation_min = min; params->float_activation_max = max; } template <> inline void SetActivationParams(int32 min, int32 max, ArithmeticParams* params) { params->quantized_activation_min = min; params->quantized_activation_max = max; } struct PadParams { int8 left_padding_count; int32 left_padding[4]; int8 right_padding_count; int32 right_padding[4]; // FloatOrInt pad_value; }; struct PoolParams { FusedActivationFunctionType activation; PaddingType padding_type; PaddingValues padding_values; int stride_height; int stride_width; int filter_height; int filter_width; // uint8, etc, activation params. int32 quantized_activation_min; int32 quantized_activation_max; // float activation params. float float_activation_min; float float_activation_max; }; struct SliceParams { int8 begin_count; int32 begin[4]; int8 size_count; int32 size[4]; }; } // namespace tflite #endif // TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_TYPES_H_