/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include #include #include #include #include #include #include #include "tensorflow/contrib/lite/c/builtin_op_data.h" #include "tensorflow/contrib/lite/c/c_api_internal.h" #include "tensorflow/contrib/lite/kernels/eigen_support.h" #include "tensorflow/contrib/lite/kernels/gemm_support.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/cblas_conv.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/multithreaded_conv.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/contrib/lite/kernels/internal/quantization_util.h" #include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/contrib/lite/kernels/internal/tensor.h" #include "tensorflow/contrib/lite/kernels/internal/tensor_utils.h" #include "tensorflow/contrib/lite/kernels/kernel_util.h" #include "tensorflow/contrib/lite/kernels/op_macros.h" #include "tensorflow/contrib/lite/kernels/padding.h" namespace tflite { namespace ops { namespace builtin { namespace conv { // This file has 4 implementation of Conv. enum KernelType { kReference, kGenericOptimized, // Neon-free // kMultithreadOptimized is a mixture of an Eigen-based kernel when threads // are available and kGenericOptimized when we must use only one thread. kMultithreadOptimized, // The kernel uses use CBLAS interface for matrix multiplication. // It's fast when an optimized CBLAS implementation is available (e.g. Apple // Accelerate Framework), and it's slow when falling back to naive // implementation. kCblasOptimized, }; const int kTensorNotAllocated = -1; struct OpData { // IDs are the arbitrary identifiers used by TF Lite to identify and access // memory buffers. int im2col_id = kTensorNotAllocated; int hwcn_weights_id = kTensorNotAllocated; int input_quantized_id = kTensorNotAllocated; int scaling_factors_id = kTensorNotAllocated; TfLitePaddingValues padding; // The scaling factor from input to output (aka the 'real multiplier') can // be represented as a fixed point multiplier plus a left shift. int32_t output_multiplier; int output_shift; // The range of the fused activation layer. For example for kNone and // uint8_t these would be 0 and 255. int32_t output_activation_min; int32_t output_activation_max; // Indexes are the offset to the memory buffer in the array used to keep track // of the allocated temporaries. int32_t im2col_index; int32_t hwcn_weights_index; int32_t input_quantized_index; int32_t scaling_factors_index; bool need_hwcn_weights; bool have_weights_been_transposed; bool need_im2col; bool run_multithreaded_kernel; }; inline PaddingType RuntimePaddingType(TfLitePadding padding) { switch (padding) { case TfLitePadding::kTfLitePaddingSame: return PaddingType::kSame; case TfLitePadding::kTfLitePaddingValid: return PaddingType::kValid; case TfLitePadding::kTfLitePaddingUnknown: default: return PaddingType::kNone; } } void* Init(TfLiteContext* context, const char* buffer, size_t length) { // This is a builtin op, so we don't use the contents in 'buffer', if any. // Instead, we allocate a new object to use as scratch space for im2col, and // to carry information from Prepare() to Eval(). auto* data = new OpData; gemm_support::IncrementUsageCounter(context); eigen_support::IncrementUsageCounter(context); return data; } void Free(TfLiteContext* context, void* buffer) { eigen_support::DecrementUsageCounter(context); gemm_support::DecrementUsageCounter(context); delete reinterpret_cast(buffer); } // Naive implementation of transpose for floats. Could be optimized to be more // cache friendly, but for now it's a one-time cost on first run, and we would // prefer to remove the need to do this at all eventually. void TransposeFloatTensor(TfLiteTensor* input, TfLiteTensor* output) { const int rows = output->dims->data[1]; const int cols = output->dims->data[0]; const float* input_data = GetTensorData(input); float* output_data = GetTensorData(output); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { const float in_value = input_data[i * cols + j]; output_data[j * rows + i] = in_value; } } } // Allocate temporary tensors (`im2col`, `hwcn_weights` if necessary). // Note: `context->AddTensors` might invalidate pointers to existing tensors. // Therefore the logic to add tensors are isolated into this function. static TfLiteStatus AllocateTemporaryTensorsIfRequired(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast(node->builtin_data); OpData* data = reinterpret_cast(node->user_data); TF_LITE_ENSURE(context, node->inputs->size >= 2); TfLiteTensor* input = &context->tensors[node->inputs->data[0]]; TfLiteTensor* filter = &context->tensors[node->inputs->data[1]]; const bool is_hybrid = (input->type == kTfLiteFloat32 && filter->type == kTfLiteUInt8); int filter_width = filter->dims->data[2]; int filter_height = filter->dims->data[1]; // We don't always need to allocate im2col. It is only used in some versions // of the optimized Conv. This test just mimics something that happens inside // optimized_ops.h, in order to avoid a DCHECK(!im2col_data). data->need_im2col = (params->stride_width != 1 || params->stride_height != 1 || params->dilation_width_factor != 1 || params->dilation_height_factor != 1 || filter_width != 1 || filter_height != 1); // If we're using the optimized multithreaded EigenTensor implementation of // convolution, it expects the filter weights to be transposed compared to // the normal TF Lite buffer format. Typical TF Lite weights are // [filter_count, filter_height, filter_width, input_depth], but for the float // implementation we need them as [filter_height, filter_width, input_depth, // filter_count]. We get to that format by transposing, and create a temporary // buffer to store the results. // This path is only used for float processing, so only create the buffer if // we're running with that data type. data->need_hwcn_weights = (input->type == kTfLiteFloat32 && data->run_multithreaded_kernel && !is_hybrid); int temporaries_count = 0; if (data->need_im2col) { data->im2col_index = temporaries_count; if (data->im2col_id == kTensorNotAllocated) { context->AddTensors(context, 1, &data->im2col_id); } ++temporaries_count; } if (data->need_hwcn_weights) { data->hwcn_weights_index = temporaries_count; if (data->hwcn_weights_id == kTensorNotAllocated) { context->AddTensors(context, 1, &data->hwcn_weights_id); } ++temporaries_count; } if (is_hybrid) { // Allocate tensor to store the on-the-fly quantized inputs. data->input_quantized_index = temporaries_count; if (data->input_quantized_id == kTensorNotAllocated) { TF_LITE_ENSURE_OK( context, context->AddTensors(context, 1, &data->input_quantized_id)); } ++temporaries_count; // Allocate tensor to store the quantization params computed during // on-the-fly input quantization. data->scaling_factors_index = temporaries_count; if (data->scaling_factors_id == kTensorNotAllocated) { TF_LITE_ENSURE_OK( context, context->AddTensors(context, 1, &data->scaling_factors_id)); } ++temporaries_count; } TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(temporaries_count); return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast(node->builtin_data); OpData* data = reinterpret_cast(node->user_data); bool has_bias = node->inputs->size == 3; // Check number of inputs/outputs TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); TfLiteTensor* output = &context->tensors[node->outputs->data[0]]; TfLiteTensor* input = &context->tensors[node->inputs->data[0]]; TfLiteTensor* filter = &context->tensors[node->inputs->data[1]]; // Check dimensionality of input, filter TF_LITE_ENSURE_EQ(context, input->dims->size, 4); TF_LITE_ENSURE_EQ(context, filter->dims->size, 4); // Check input channels matching filter TF_LITE_ENSURE_EQ(context, input->dims->data[3], filter->dims->data[3]); // Check types. (We assume that UINT8 refers to quantized tensors) TfLiteType input_type = input->type; TF_LITE_ENSURE(context, input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8); TF_LITE_ENSURE_EQ(context, output->type, input_type); TfLiteTensor* bias = nullptr; // TODO(ahentz): At this point the optimized versions require 'bias'. We can // either change that or document that convolution requires it. TF_LITE_ENSURE(context, has_bias); if (has_bias) { bias = &context->tensors[node->inputs->data[2]]; if (input_type == kTfLiteUInt8) { TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, bias->params.zero_point, 0); } else { TF_LITE_ENSURE_EQ(context, bias->type, input_type); } TF_LITE_ENSURE_EQ(context, NumElements(bias), SizeOfDimension(filter, 0)); } const bool is_hybrid = (input->type == kTfLiteFloat32 && filter->type == kTfLiteUInt8); data->run_multithreaded_kernel = context->recommended_num_threads != 1; // Hybrid kernels don't support multithreading yet. if (is_hybrid) { data->run_multithreaded_kernel = false; } TF_LITE_ENSURE_STATUS(AllocateTemporaryTensorsIfRequired(context, node)); int channels_in = filter->dims->data[3]; int channels_out = filter->dims->data[0]; int width = input->dims->data[2]; int height = input->dims->data[1]; int filter_width = filter->dims->data[2]; int filter_height = filter->dims->data[1]; int batches = input->dims->data[0]; // Matching GetWindowedOutputSize in TensorFlow. auto padding = params->padding; auto compute_out_size = [padding](int image_size, int filter_size, int stride, int dilation_rate) -> int { int effective_filter_size = (filter_size - 1) * dilation_rate + 1; return padding == kTfLitePaddingSame ? (image_size + stride - 1) / stride : padding == kTfLitePaddingValid ? (image_size - effective_filter_size + stride) / stride : 0; }; int out_width = compute_out_size(width, filter_width, params->stride_width, params->dilation_width_factor); int out_height = compute_out_size(height, filter_height, params->stride_height, params->dilation_height_factor); data->padding.height = ComputePadding(params->stride_height, params->dilation_height_factor, height, filter_height, out_height); data->padding.width = ComputePadding(params->stride_width, params->dilation_width_factor, width, filter_width, out_width); TF_LITE_ENSURE(context, has_bias); // Note that full fixed-point inference requires that all tensors have their // parameters set. This is usually done during quantized training. if (input_type != kTfLiteFloat32) { double real_multiplier = 0.0; TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( context, input, filter, bias, output, &real_multiplier)); int exponent; QuantizeMultiplier(real_multiplier, &data->output_multiplier, &exponent); data->output_shift = -exponent; CalculateActivationRangeUint8(params->activation, output, &data->output_activation_min, &data->output_activation_max); } TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = batches; output_size->data[1] = out_height; output_size->data[2] = out_width; output_size->data[3] = channels_out; auto output_status = context->ResizeTensor(context, output, output_size); if (output_status != kTfLiteOk) return output_status; if (data->need_im2col) { node->temporaries->data[data->im2col_index] = data->im2col_id; TfLiteIntArray* im2col_size = TfLiteIntArrayCreate(4); int input_depth = input->dims->data[3]; im2col_size->data[0] = output_size->data[0]; im2col_size->data[1] = output_size->data[1]; im2col_size->data[2] = output_size->data[2]; im2col_size->data[3] = input_depth * filter_height * filter_width; TfLiteTensor* im2col = &context->tensors[node->temporaries->data[data->im2col_index]]; im2col->type = input->type; if (is_hybrid) { im2col->type = kTfLiteUInt8; } im2col->allocation_type = kTfLiteArenaRw; auto im2col_status = context->ResizeTensor(context, im2col, im2col_size); if (im2col_status != kTfLiteOk) return im2col_status; } if (data->need_hwcn_weights) { node->temporaries->data[data->hwcn_weights_index] = data->hwcn_weights_id; TfLiteIntArray* hwcn_weights_size = TfLiteIntArrayCreate(2); // Because we're treating the filter weights as a matrix when we do the // transpose, we allocate the buffer with a two-dimensional shape, where one // dimension is the number of elements in each filter, and the second is the // total number of filters. int input_depth = input->dims->data[3]; hwcn_weights_size->data[0] = (filter_height * filter_width * input_depth); hwcn_weights_size->data[1] = channels_out; TfLiteTensor* hwcn_weights = &context->tensors[node->temporaries->data[data->hwcn_weights_index]]; hwcn_weights->type = input_type; hwcn_weights->allocation_type = kTfLiteArenaRwPersistent; auto hwcn_weights_status = context->ResizeTensor(context, hwcn_weights, hwcn_weights_size); if (hwcn_weights_status != kTfLiteOk) return hwcn_weights_status; // TODO(petewarden): If Resize() is called when the size hasn't actually // changed, this will do extra redundant work. data->have_weights_been_transposed = false; } if (is_hybrid) { node->temporaries->data[data->input_quantized_index] = data->input_quantized_id; TfLiteTensor* input_quantized = GetTemporary(context, node, data->input_quantized_index); input_quantized->type = kTfLiteUInt8; input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) { TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); } node->temporaries->data[data->scaling_factors_index] = data->scaling_factors_id; TfLiteTensor* scaling_factors = GetTemporary(context, node, data->scaling_factors_index); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); // Only one scale factor per batch is typically necessary. See optimized // implementation for why we need to allocate for the height of the inputs // flattened to 2D. scaling_factors_size->data[0] = NumElements(input) / channels_in; if (!TfLiteIntArrayEqual(scaling_factors->dims, scaling_factors_size)) { TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } } return kTfLiteOk; } template void EvalQuantized(TfLiteContext* context, TfLiteNode* node, TfLiteConvParams* params, OpData* data, TfLiteTensor* input, TfLiteTensor* filter, TfLiteTensor* bias, TfLiteTensor* im2col, TfLiteTensor* hwcn_weights, TfLiteTensor* output) { gemmlowp::GemmContext* gemm_context = gemm_support::GetFromContext(context); auto input_offset = -input->params.zero_point; auto filter_offset = -filter->params.zero_point; auto output_offset = output->params.zero_point; KernelType effective_kernel_type; if ((kernel_type == kMultithreadOptimized || kernel_type == kCblasOptimized) && (params->dilation_width_factor != 1 || params->dilation_height_factor != 1)) { // kMultithreadOptimized and kCblasOptimized do not support dilation. // Therefore, fallback to optimized. effective_kernel_type = kGenericOptimized; } else { effective_kernel_type = kernel_type; } switch (effective_kernel_type) { case kReference: { ConvParams op_params; op_params.padding_type = PaddingType::kSame; op_params.padding_values.width = data->padding.width; op_params.padding_values.height = data->padding.height; op_params.stride_width = params->stride_width; op_params.stride_height = params->stride_height; op_params.dilation_width_factor = params->dilation_width_factor; op_params.dilation_height_factor = params->dilation_height_factor; op_params.input_offset = input_offset; op_params.weights_offset = filter_offset; op_params.output_offset = output_offset; op_params.output_multiplier = data->output_multiplier; op_params.output_shift = -data->output_shift; op_params.quantized_activation_min = data->output_activation_min; op_params.quantized_activation_max = data->output_activation_max; reference_ops::Conv( op_params, GetTensorShape(input), GetTensorData(input), GetTensorShape(filter), GetTensorData(filter), GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), GetTensorData(im2col), gemm_context); break; } case kGenericOptimized: case kMultithreadOptimized: case kCblasOptimized: { // There is only one optimized implementation for Quantized Conv. ConvParams op_params; op_params.padding_type = PaddingType::kSame; op_params.padding_values.width = data->padding.width; op_params.padding_values.height = data->padding.height; op_params.stride_width = params->stride_width; op_params.stride_height = params->stride_height; op_params.dilation_width_factor = params->dilation_width_factor; op_params.dilation_height_factor = params->dilation_height_factor; op_params.input_offset = input_offset; op_params.weights_offset = filter_offset; op_params.output_offset = output_offset; op_params.output_multiplier = data->output_multiplier; op_params.output_shift = -data->output_shift; op_params.quantized_activation_min = data->output_activation_min; op_params.quantized_activation_max = data->output_activation_max; optimized_ops::Conv( op_params, GetTensorShape(input), GetTensorData(input), GetTensorShape(filter), GetTensorData(filter), GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), GetTensorData(im2col), gemm_context); break; } } } template void EvalFloat(TfLiteContext* context, TfLiteNode* node, TfLiteConvParams* params, OpData* data, TfLiteTensor* input, TfLiteTensor* filter, TfLiteTensor* bias, TfLiteTensor* im2col, TfLiteTensor* hwcn_weights, TfLiteTensor* output) { float output_activation_min, output_activation_max; CalculateActivationRange(params->activation, &output_activation_min, &output_activation_max); KernelType effective_kernel_type; if ((kernel_type == kMultithreadOptimized || kernel_type == kCblasOptimized) && (params->dilation_width_factor != 1 || params->dilation_height_factor != 1)) { // kMultithreadOptimized and kCblasOptimized do not support dilation. // Therefore, fallback to optimized. effective_kernel_type = kGenericOptimized; } else { effective_kernel_type = kernel_type; } ConvParams op_params; op_params.padding_type = RuntimePaddingType(params->padding); op_params.padding_values.width = data->padding.width; op_params.padding_values.height = data->padding.height; op_params.stride_width = params->stride_width; op_params.stride_height = params->stride_height; op_params.dilation_width_factor = params->dilation_width_factor; op_params.dilation_height_factor = params->dilation_height_factor; op_params.float_activation_min = output_activation_min; op_params.float_activation_max = output_activation_max; switch (effective_kernel_type) { case kReference: { reference_ops::Conv(op_params, GetTensorShape(input), GetTensorData(input), GetTensorShape(filter), GetTensorData(filter), GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), GetTensorData(im2col)); break; } case kGenericOptimized: { optimized_ops::Conv(op_params, GetTensorShape(input), GetTensorData(input), GetTensorShape(filter), GetTensorData(filter), GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), GetTensorData(im2col)); break; } case kMultithreadOptimized: { const float* filter_data; if (data->need_hwcn_weights) { filter_data = GetTensorData(hwcn_weights); } else { filter_data = GetTensorData(filter); } multithreaded_ops::Conv( *eigen_support::GetThreadPoolDevice(context), op_params, GetTensorShape(input), GetTensorData(input), GetTensorShape(filter), filter_data, GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), GetTensorData(im2col)); break; } case kCblasOptimized: { cblas_ops::Conv(op_params, GetTensorShape(input), GetTensorData(input), GetTensorShape(filter), GetTensorData(filter), GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), GetTensorData(im2col)); break; } } } template void EvalHybrid(TfLiteContext* context, TfLiteNode* node, TfLiteConvParams* params, OpData* data, TfLiteTensor* input, TfLiteTensor* filter, TfLiteTensor* bias, TfLiteTensor* im2col, TfLiteTensor* hwcn_weights, TfLiteTensor* output) { float output_activation_min, output_activation_max; CalculateActivationRange(params->activation, &output_activation_min, &output_activation_max); const int input_size = NumElements(input) / SizeOfDimension(input, 0); const int batch_size = SizeOfDimension(input, 0); const TfLiteTensor* input_quantized = GetTemporary(context, node, data->input_quantized_index); int8_t* quantized_input_ptr_batch = reinterpret_cast(input_quantized->data.uint8); float* scaling_factors_ptr = GetTemporary(context, node, data->scaling_factors_index)->data.f; // Per-batch input quantization for higher accuracy. for (int b = 0; b < batch_size; ++b) { float unused_min, unused_max; const int offset = b * input_size; tensor_utils::SymmetricQuantizeFloats( input->data.f + offset, input_size, quantized_input_ptr_batch + offset, &unused_min, &unused_max, &scaling_factors_ptr[b]); scaling_factors_ptr[b] *= filter->params.scale; } int8_t* im2col_ptr = nullptr; if (im2col != nullptr) { im2col_ptr = reinterpret_cast(im2col->data.uint8); } int8_t* filter_ptr = reinterpret_cast(filter->data.uint8); switch (kernel_type) { case kReference: case kGenericOptimized: case kMultithreadOptimized: case kCblasOptimized: { // There is only one implementation for hybrid kernel. Note // this does not make use of gemmlowp nor supports multithreading. ConvParams op_params; op_params.padding_type = PaddingType::kSame; op_params.padding_values.width = data->padding.width; op_params.padding_values.height = data->padding.height; op_params.stride_width = params->stride_width; op_params.stride_height = params->stride_height; op_params.dilation_width_factor = 1; op_params.dilation_height_factor = 1; op_params.float_activation_min = output_activation_min; op_params.float_activation_max = output_activation_max; optimized_ops::HybridConv( op_params, scaling_factors_ptr, GetTensorShape(input), quantized_input_ptr_batch, GetTensorShape(filter), filter_ptr, GetTensorShape(bias), GetTensorData(bias), GetTensorShape(output), GetTensorData(output), GetTensorShape(im2col), im2col_ptr); break; } } } template TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast(node->builtin_data); OpData* data = reinterpret_cast(node->user_data); TfLiteTensor* output = &context->tensors[node->outputs->data[0]]; TfLiteTensor* input = &context->tensors[node->inputs->data[0]]; TfLiteTensor* filter = &context->tensors[node->inputs->data[1]]; bool has_bias = node->inputs->size == 3; TfLiteTensor* bias = has_bias ? &context->tensors[node->inputs->data[2]] : nullptr; TfLiteTensor* im2col = data->need_im2col ? &context->tensors[node->temporaries->data[data->im2col_index]] : nullptr; TfLiteTensor* hwcn_weights = data->need_hwcn_weights ? &context->tensors[node->temporaries->data[data->hwcn_weights_index]] : nullptr; if (data->need_hwcn_weights && !data->have_weights_been_transposed) { TransposeFloatTensor(filter, hwcn_weights); data->have_weights_been_transposed = true; } // TODO(aselle): Consider whether float conv and quantized conv should be // separate ops to avoid dispatch overhead here. switch (input->type) { // Already know in/outtypes are same. case kTfLiteFloat32: if (filter->type == kTfLiteUInt8) { EvalHybrid(context, node, params, data, input, filter, bias, im2col, hwcn_weights, output); } else if (data->run_multithreaded_kernel) { EvalFloat(context, node, params, data, input, filter, bias, im2col, hwcn_weights, output); } else { EvalFloat(context, node, params, data, input, filter, bias, im2col, hwcn_weights, output); } break; case kTfLiteUInt8: EvalQuantized(context, node, params, data, input, filter, bias, im2col, hwcn_weights, output); break; default: context->ReportError(context, "Type %d not currently supported.", input->type); return kTfLiteError; } return kTfLiteOk; } } // namespace conv TfLiteRegistration* Register_CONVOLUTION_REF() { static TfLiteRegistration r = {conv::Init, conv::Free, conv::Prepare, conv::Eval}; return &r; } TfLiteRegistration* Register_CONVOLUTION_GENERIC_OPT() { static TfLiteRegistration r = {conv::Init, conv::Free, conv::Prepare, conv::Eval}; return &r; } TfLiteRegistration* Register_CONVOLUTION_MULTITHREADED_OPT() { static TfLiteRegistration r = {conv::Init, conv::Free, conv::Prepare, conv::Eval}; return &r; } TfLiteRegistration* Register_CONVOLUTION_CBLAS_OPT() { static TfLiteRegistration r = {conv::Init, conv::Free, conv::Prepare, conv::Eval}; return &r; } TfLiteRegistration* Register_CONV_2D() { #ifdef TFLITE_USE_APPLE_ACCELERATE_FOR_CONV return Register_CONVOLUTION_CBLAS_OPT(); #else return Register_CONVOLUTION_MULTITHREADED_OPT(); #endif } } // namespace builtin } // namespace ops } // namespace tflite