/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/contrib/lite/arena_planner.h" #include #include #include #include "tensorflow/contrib/lite/testing/util.h" #include "tensorflow/core/platform/logging.h" namespace tflite { namespace { constexpr const int kTensorAlignment = 4; // A simple op to be used in tests, as syntactic sugar. class TestOp { public: TestOp(std::initializer_list inputs, std::initializer_list outputs, std::initializer_list temporaries) : inputs_(inputs), outputs_(outputs), temporaries_(temporaries) {} const std::vector& inputs() const { return inputs_; } const std::vector& outputs() const { return outputs_; } const std::vector& temporaries() const { return temporaries_; } private: std::vector inputs_; std::vector outputs_; std::vector temporaries_; }; // A test graph where inputs are processed by the given nodes to produce // outputs. class TestGraph { public: TestGraph(std::initializer_list inputs, std::initializer_list nodes, std::initializer_list outputs) : inputs_(inputs), outputs_(outputs) { int max_tensor_index = 0; for (int t : inputs) { max_tensor_index = std::max(max_tensor_index, t); } for (int t : outputs) { max_tensor_index = std::max(max_tensor_index, t); } for (const auto& node : nodes) { auto int_array = [](const std::vector& x) { TfLiteIntArray* lite = TfLiteIntArrayCreate(x.size()); for (size_t i = 0; i < x.size(); i++) lite->data[i] = x[i]; return lite; }; nodes_.push_back(TfLiteNode()); nodes_.back().inputs = int_array(node.inputs()); for (int t : node.inputs()) { max_tensor_index = std::max(max_tensor_index, t); } nodes_.back().outputs = int_array(node.outputs()); for (int t : node.outputs()) { max_tensor_index = std::max(max_tensor_index, t); } nodes_.back().temporaries = int_array(node.temporaries()); for (int t : node.temporaries()) { max_tensor_index = std::max(max_tensor_index, t); } } for (int i = 0; i <= max_tensor_index; ++i) { tensors_.push_back(TfLiteTensor()); // Set some default values for allocation_type and bytes, which are the // only fields used by the arena planner. tensors_.back().allocation_type = kTfLiteArenaRw; tensors_.back().bytes = (i + 1) * 3; } } ~TestGraph() { for (auto node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); TfLiteIntArrayFree(node.temporaries); } } const std::vector& nodes() { return nodes_; } std::vector* tensors() { return &tensors_; } const std::vector& inputs() { return inputs_; } const std::vector& outputs() { return outputs_; } const std::vector& variables() { return variables_; } void SetVariables(const std::vector& variables) { variables_ = variables; } private: std::vector nodes_; std::vector tensors_; std::vector inputs_; std::vector outputs_; std::vector variables_; }; // The GraphInfo for a TestGraph. class TestGraphInfo : public GraphInfo { public: explicit TestGraphInfo(TestGraph* graph) : graph_(graph) {} size_t num_tensors() const override { return graph_->tensors()->size(); } TfLiteTensor* tensor(size_t index) override { return &graph_->tensors()->at(index); } size_t num_nodes() const override { return graph_->nodes().size(); } const TfLiteNode& node(size_t index) const override { return graph_->nodes()[index]; } const std::vector& inputs() const override { return graph_->inputs(); } const std::vector& outputs() const override { return graph_->outputs(); } const std::vector& variables() const override { return graph_->variables(); } private: TestGraph* graph_; }; void ReportError(TfLiteContext* context, const char* format, ...) { const size_t kBufferSize = 1024; char temp_buffer[kBufferSize]; va_list args; va_start(args, format); vsnprintf(temp_buffer, kBufferSize, format, args); va_end(args); LOG(INFO) << temp_buffer; } class ArenaPlannerTest : public ::testing::Test { protected: void SetGraph(TestGraph* graph, bool preserve_inputs = false) { graph_ = graph; context_.ReportError = ReportError; planner_.reset(new ArenaPlanner( &context_, std::unique_ptr(new TestGraphInfo(graph)), preserve_inputs, /*preserve intermediates*/ false, kTensorAlignment)); CHECK(planner_->ResetAllocations() == kTfLiteOk); CHECK(planner_->PlanAllocations() == kTfLiteOk); } void Execute(int start, int end) { CHECK(planner_->ExecuteAllocations(start, end) == kTfLiteOk); } // Returns the actual offset of a given tensor, relative to the start of its // arena. int64_t GetOffset(int tensor_index) { const TfLiteTensor& tensor = (*graph_->tensors())[tensor_index]; return reinterpret_cast(tensor.data.raw) - planner_->BasePointer(tensor.allocation_type); } // Returns the first aligned offset after a given tensor. int64_t GetOffsetAfter(int tensor_index) { const TfLiteTensor& tensor = (*graph_->tensors())[tensor_index]; int64_t offset = GetOffset(tensor_index) + tensor.bytes; // We must make sure the offset is aligned to kDefaultArenaAlignment. if (offset % kTensorAlignment != 0) { offset += kTensorAlignment - offset % kTensorAlignment; } return offset; }; TfLiteContext context_; TestGraph* graph_; std::unique_ptr planner_; }; TEST_F(ArenaPlannerTest, EmptyGraph) { TestGraph graph({}, {}, {}); SetGraph(&graph); Execute(0, 10); } TEST_F(ArenaPlannerTest, GraphWithNoOps) { TestGraph graph({0, 10}, {}, {5, 11}); SetGraph(&graph); Execute(0, 10); EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(10), GetOffsetAfter(0)); // The outputs are never allocated because they are not connected to any // inputs. EXPECT_TRUE((*graph.tensors())[5].data.raw == nullptr); EXPECT_TRUE((*graph.tensors())[11].data.raw == nullptr); } TEST_F(ArenaPlannerTest, GraphWithOneOp) { TestGraph graph({1}, {{{1}, {2}, {}}}, {2}); SetGraph(&graph); Execute(0, 10); EXPECT_EQ(GetOffset(1), 0); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); } TEST_F(ArenaPlannerTest, ZeroSizedTensors) { TestGraph graph({1}, {{{1}, {2}, {}}}, {2}); (*graph.tensors())[1].bytes = 0; SetGraph(&graph); ASSERT_EQ(planner_->ExecuteAllocations(0, 10), kTfLiteOk); EXPECT_EQ((*graph_->tensors())[1].data.raw, nullptr); } TEST_F(ArenaPlannerTest, SimpleGraph) { TestGraph graph({0, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4, 5}, {}}, // Second op {{4, 5}, {3}, {}} // Third op }, {3}); SetGraph(&graph); Execute(0, 10); // Alloc(+) and dealloc(-) order: +0 +1 +2 -1 +4 +5 -2 -0 +3 -4 -5 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); EXPECT_EQ(GetOffset(3), 0); } TEST_F(ArenaPlannerTest, SimpleGraphInputsPreserved) { TestGraph graph({0, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4, 5}, {}}, // Second op {{4, 5}, {3}, {}} // Third op }, {3}); SetGraph(&graph, /*preserve_inputs=*/true); Execute(0, 10); // Alloc(+) and dealloc(-) order: +0 +1 +2 +4 +5 -2 +3 -4 -5 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); // Because we are keeping the inputs alive until the end (due to // preserve_inputs=true), the output tensor will not be able to use that // space. It will end up using the same are as tensor #2. EXPECT_EQ(GetOffset(3), GetOffsetAfter(1)); } TEST_F(ArenaPlannerTest, SimpleGraphWithTemporary) { TestGraph graph({0, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4}, {5}}, // Second op, with temporary {{4}, {3}, {}} // Third op }, {3}); SetGraph(&graph); Execute(0, 10); // Alloc(+) and dealloc(-) order: +0 +1 +2 -1 +5 +4 -2 -0 -5 +3 -4 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(5)); EXPECT_EQ(GetOffset(3), 0); } TEST_F(ArenaPlannerTest, SimpleGraphWithOptionals) { TestGraph graph({0, -1, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4, 5}, {}}, // Second op {{4, -1, 5}, {3}, {}} // Third op, with optional }, {3}); SetGraph(&graph); Execute(0, 10); // Alloc(+) and dealloc(-) order: +0 +1 +2 -1 +4 +5 -2 -0 +3 -4 -5 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); EXPECT_EQ(GetOffset(3), 0); } TEST_F(ArenaPlannerTest, SimpleGraphWithLargeTensor) { TestGraph graph({0, -1, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4}, {5}}, // Second op, with temporary {{4, -1}, {3}, {}} // Third op, with optional }, {3}); // Make #1 very large so its vacancy can be filled with #5 and #4. (*graph.tensors())[1].bytes = 40; SetGraph(&graph); Execute(0, 10); // Alloc(+) and dealloc(-) order: +0 +1 +2 -1 +5 +4 -2 -0 -5 +3 -4 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(5)); EXPECT_EQ(GetOffset(3), 0); } TEST_F(ArenaPlannerTest, SimpleGraphWithPersistentTensor) { TestGraph graph({0, -1, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4}, {5}}, // Second op, with persistent {{4, -1}, {3}, {}} // Third op, with optional }, {3}); // Make #1 persistent so it goes into its own arena. (*graph.tensors())[1].allocation_type = kTfLiteArenaRwPersistent; // The only use case for kTfLiteArenaRwPersistent is variable tensor now. graph.SetVariables({1}); SetGraph(&graph); Execute(0, 10); // Make sure #0 and #1 were given different memory locations (because they // will both have offset=0, in different arenas.) EXPECT_NE((*graph.tensors())[0].data.raw, (*graph.tensors())[1].data.raw); // Alloc(+) and dealloc(-) order: +0 +1 +2 -1 +5 +4 -2 -0 -5 +3 -4 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), 0); EXPECT_EQ(GetOffset(2), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(5)); EXPECT_EQ(GetOffset(3), 0); } TEST_F(ArenaPlannerTest, SimpleGraphWithDynamicTensor) { TestGraph graph({0, -1, 1}, { /* in, out, tmp */ {{0, 1}, {2}, {}}, // First op {{2, 0}, {4}, {5}}, // Second op, with temporary {{4, -1}, {3}, {}} // Third op, with optional }, {3}); // Make #1 dynaic so it does not get allocated. (*graph.tensors())[1].allocation_type = kTfLiteDynamic; SetGraph(&graph); Execute(0, 10); EXPECT_EQ((*graph.tensors())[1].data.raw, nullptr); // Alloc(+) and dealloc(-) order: +0 +1 +2 -1 +5 +4 -2 -0 -5 +3 -4 EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(2), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(5)); EXPECT_EQ(GetOffset(3), 0); } TEST_F(ArenaPlannerTest, LargerGraphAndStepwiseAllocation) { TestGraph graph({0, 1}, { /* in, out, tmp */ {{0, 1}, {2, 3}, {}}, {{2, 0}, {4, 5}, {6}}, {{1, -1}, {7}, {}}, {{7, 3}, {8}, {9}}, {{4, 5, 8}, {10}, {}}, }, {10}); SetGraph(&graph); auto is_unallocated = [&](int tensor_index) { return (*graph.tensors())[tensor_index].data.raw == nullptr; }; // The allocation plan is made at the beginning and is independent of // the execution steps. Here's the allocation order: // Op0: +0 +1 +2 +3 // Op1: +6 +4 +5 -6 -0 -2 // Op2: +7 -1 // Op3: +9 +8 -9 -3 -7 // Op4: +10 -4 -5 -8 Execute(0, 0); EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(3), GetOffsetAfter(2)); EXPECT_TRUE(is_unallocated(6)); EXPECT_TRUE(is_unallocated(4)); EXPECT_TRUE(is_unallocated(5)); EXPECT_TRUE(is_unallocated(7)); EXPECT_TRUE(is_unallocated(9)); EXPECT_TRUE(is_unallocated(8)); EXPECT_TRUE(is_unallocated(10)); Execute(1, 1); EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(3), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(6), GetOffsetAfter(3)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(6)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); EXPECT_TRUE(is_unallocated(7)); EXPECT_TRUE(is_unallocated(9)); EXPECT_TRUE(is_unallocated(8)); EXPECT_TRUE(is_unallocated(10)); Execute(2, 2); EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(3), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(6), GetOffsetAfter(3)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(6)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); // Here's an interesting allocation. Even though #6 requires only 21 bytes, // its deallocation freed up 24 bytes due to the alignment requirements in // the arena. That means we can fit #7 in the same space! EXPECT_EQ(GetOffset(7), GetOffsetAfter(3)); EXPECT_TRUE(is_unallocated(9)); EXPECT_TRUE(is_unallocated(8)); EXPECT_TRUE(is_unallocated(10)); Execute(3, 3); EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(3), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(6), GetOffsetAfter(3)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(6)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); EXPECT_EQ(GetOffset(7), GetOffsetAfter(3)); // The deallocation of #0, #1 and #2 freed up 24 bytes but that's not enough // for #9, so it goes at the end. EXPECT_EQ(GetOffset(9), GetOffsetAfter(5)); EXPECT_EQ(GetOffset(8), GetOffsetAfter(9)); EXPECT_TRUE(is_unallocated(10)); Execute(4, 4); EXPECT_EQ(GetOffset(0), 0); EXPECT_EQ(GetOffset(1), GetOffsetAfter(0)); EXPECT_EQ(GetOffset(2), GetOffsetAfter(1)); EXPECT_EQ(GetOffset(3), GetOffsetAfter(2)); EXPECT_EQ(GetOffset(6), GetOffsetAfter(3)); EXPECT_EQ(GetOffset(4), GetOffsetAfter(6)); EXPECT_EQ(GetOffset(5), GetOffsetAfter(4)); EXPECT_EQ(GetOffset(7), GetOffsetAfter(3)); EXPECT_EQ(GetOffset(9), GetOffsetAfter(5)); EXPECT_EQ(GetOffset(8), GetOffsetAfter(9)); // There's just enough space at the beginning for #10 due to the // deallocation of #0, #1, #2 and #3 (total 36 bytes, #10 needs // only 33.) EXPECT_EQ(GetOffset(10), 0); } } // namespace } // namespace tflite int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }