/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/xla/service/while_loop_invariant_code_motion.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "tensorflow/compiler/xla/service/tuple_util.h" #include "tensorflow/compiler/xla/service/while_util.h" #include "tensorflow/compiler/xla/util.h" namespace xla { using absl::flat_hash_map; using absl::flat_hash_set; using absl::InlinedVector; // Copies `to_hoist` to the computation containing `while_instr`, hoisting its // operands as needed. All of its transitive operands are expected to be either // in `hoisted_instructions` or `unhoisted_invariant_instructions`. This // function hoists the operands in `unhoisted_invariant_instructions` and moves // them into `hoisted_instructions`. static void CreateLoopInvariantCopy( flat_hash_map* hoisted_instructions, flat_hash_set* unhoisted_invariant_instructions, HloInstruction* while_instr, HloInstruction* to_hoist) { HloComputation* parent_of_while = while_instr->parent(); HloComputation* while_body = while_instr->while_body(); struct DFSFrame { HloInstruction* instruction; int64 operand_index; }; InlinedVector dfs_stack; dfs_stack.push_back({to_hoist, 0}); HloInstruction* while_body_param = while_body->parameter_instruction(0); HloInstruction* while_operand = while_instr->mutable_operand(0); do { DFSFrame* frame = &dfs_stack.back(); if (frame->operand_index == frame->instruction->operand_count()) { HloInstruction* old_instruction = frame->instruction; // All of the operands for old_instruction have been cloned, so it is // time to clone old_instruction itself. auto get_new_operand = [&](HloInstruction* old_operand) { return old_operand == while_body_param ? while_operand : FindOrDie(*hoisted_instructions, old_operand); }; InlinedVector new_operands; absl::c_transform(old_instruction->operands(), std::back_inserter(new_operands), get_new_operand); HloInstruction* new_instruction = parent_of_while->AddInstruction(old_instruction->CloneWithNewOperands( old_instruction->shape(), new_operands)); InsertOrDie(hoisted_instructions, old_instruction, new_instruction); // Approximately half of the instructions that would normally be present // in unhoisted_invariant_instructions are constants. We save a bit of // compile time by not putting these in the hashtable. CHECK_EQ(unhoisted_invariant_instructions->erase(old_instruction), to_hoist != old_instruction && old_instruction->opcode() != HloOpcode::kConstant); dfs_stack.pop_back(); continue; } HloInstruction* next_operand = frame->instruction->mutable_operand(frame->operand_index++); if (hoisted_instructions->count(next_operand) || next_operand == while_body_param) { continue; } dfs_stack.push_back({next_operand, 0}); } while (!dfs_stack.empty()); } // Returns true if `instruction` is worth hoisting only if it lets us hoist some // instruction using it. The rationale is that hoisting these instructions will // prevent simplification and fusion in the while body. bool WhileLoopInvariantCodeMotion::NotWorthHoistingIndividually( const HloInstruction& instruction) { switch (instruction.opcode()) { default: return false; case HloOpcode::kConstant: return !hoist_constants_; case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kIota: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kTranspose: case HloOpcode::kTuple: return true; } } StatusOr WhileLoopInvariantCodeMotion::TryHoistingInvariantInstructionsFromWhileBody( HloInstruction* while_instr) { auto print_no_metadata = HloPrintOptions{}.set_print_metadata(false); if (!ShapeUtil::IsTuple(while_instr->shape())) { // This restriction leaves one interesting pattern on the table: // // while_body(f32[1024, 1024] %param) { // %value = expensive_op(%param) // outfeed(%value) // ROOT = %param // } // // If we see that pattern in the while, instead of generalizing this // algorithm to work with non-tuples, we should instead add a pass that // canonicalizes while loops like the above to use a tuple state. return false; } string while_instr_name = while_instr->ToString(print_no_metadata); VLOG(2) << "Trying to hoist from " << while_instr_name; HloComputation* while_body = while_instr->while_body(); // Maps instructions in the while body to instructions hoisted outside the // while that compute the same value. flat_hash_map hoisted_instructions; // Contains instructions that can be legally hoisted, but were deemed to be // unprofitable to be hoisted alone by NotWorthHoistingIndividually. When we // hoist an instruction in this set, we move it from // unhoisted_invariant_instructions to hoisted_instructions. flat_hash_set unhoisted_invariant_instructions; // Invariant GTE's axiomatically satisfy the constraints for // unhoisted_invariant_instructions -- they can be legally hoisted, but there // is no benefit to hoisting them unless something that uses it is also // hoisted. for (auto* instr : WhileUtil::GetInvariantGTEsForWhileBody(*while_body)) { if (ShapeUtil::IsArray(instr->shape())) { // TODO(b/79147885): We should try to generalize this to tuples for // uniformity's sake, if nothing else. InsertOrDie(&unhoisted_invariant_instructions, instr); } } if (unhoisted_invariant_instructions.empty() && !hoist_constants_) { // There are no obviously loop invariant elements in the state being // threaded through the while loop so give up. In theory this precondition // is too strong -- we could have code that e.g. permutes the elements in // the while state but uses a select to pick the same value on every // iteration. // // If we were asked to hoist constants, we need to scan the while body for // constants even if we didn't find any loop invariant values in the while // state tuple. return false; } // instructions_to_replace[i] is hoisted into a loop invariant instruction // replacement_instructions[i]. std::vector instructions_to_replace; std::vector replacement_instructions; for (auto* instruction : while_body->MakeInstructionPostOrder()) { if (instruction->HasSideEffect() || instruction->opcode() == HloOpcode::kParameter || !instruction->control_predecessors().empty() || !instruction->control_successors().empty()) { continue; } auto is_invariant = [&](HloInstruction* op) { return hoisted_instructions.find(op) != hoisted_instructions.end() || unhoisted_invariant_instructions.count(op) || op->opcode() == HloOpcode::kConstant; }; if (!absl::c_all_of(instruction->operands(), is_invariant)) { continue; } if (NotWorthHoistingIndividually(*instruction)) { VLOG(2) << "Adding " << instruction->ToString(print_no_metadata) << " to unhoisted invariant set."; // Approximately half of the instructions that reach this point are // constants. We save a bit of compile time by not putting these in the // hashtable. if (instruction->opcode() != HloOpcode::kConstant) { InsertOrDie(&unhoisted_invariant_instructions, instruction); } continue; } VLOG(2) << "Hoisting " << instruction->ToString(print_no_metadata); CreateLoopInvariantCopy(&hoisted_instructions, &unhoisted_invariant_instructions, while_instr, instruction); instructions_to_replace.push_back(instruction); replacement_instructions.push_back( FindOrDie(hoisted_instructions, instruction)); } if (instructions_to_replace.empty()) { return false; } TF_ASSIGN_OR_RETURN( WhileUtil::MakeInstructionsLiveInResult live_in_instructions_result, WhileUtil::MakeInstructionsLiveIn(while_instr, replacement_instructions)); HloComputation* new_while_body = live_in_instructions_result.new_while_instr->while_body(); for (int i = 0; i < instructions_to_replace.size(); i++) { HloInstruction* instruction_to_replace_in_new_while = FindOrDie(live_in_instructions_result.while_body_instruction_map, instructions_to_replace[i]); TF_RETURN_IF_ERROR(new_while_body->ReplaceInstruction( instruction_to_replace_in_new_while, live_in_instructions_result.while_body_live_in_values[i])); } VLOG(1) << "Hoisted " << instructions_to_replace.size() << " instructions from " << while_instr_name; return true; } StatusOr WhileLoopInvariantCodeMotion::Run(HloModule* module) { VLOG(2) << "HLO module before WhileLoopConstantSinking:"; XLA_VLOG_LINES(2, module->ToString()); bool changed = false; std::vector while_instrs; for (auto* comp : module->computations()) { absl::c_copy_if(comp->instructions(), std::back_inserter(while_instrs), [](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kWhile; }); } for (HloInstruction* while_instr : while_instrs) { // Right now we only hoist computations from the while body, but // TryHoistingInvariantInstructionsFromWhileBody can be generalized to // optimize the condition computation too, if needed. // // The transform we do here is a pessmization for while loops that execute // zero times*, but at this time we expect those to be rare. If this // becomes a problem we can consider using the conditional HLO to avoid // doing extra work for while loops with zero trip count. // // * We delete while loops that have a zero trip count, so this would have // to be a while loop with a somewhat opaque condition expression. TF_ASSIGN_OR_RETURN( bool result, TryHoistingInvariantInstructionsFromWhileBody(while_instr)); changed |= result; } if (changed) { VLOG(2) << "HLO module after WhileLoopConstantSinking:"; XLA_VLOG_LINES(2, module->ToString()); } else { VLOG(2) << "HLO module unchanged after WhileLoopConstantSinking"; } return changed; } } // namespace xla