/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_HEAP_SIMULATOR_H_ #define TENSORFLOW_COMPILER_XLA_SERVICE_HEAP_SIMULATOR_H_ #include #include #include #include #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/compiler/xla/service/buffer_value.h" #include "tensorflow/compiler/xla/service/buffer_value_containers.h" #include "tensorflow/compiler/xla/service/hlo.pb.h" #include "tensorflow/compiler/xla/service/hlo_computation.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" #include "tensorflow/compiler/xla/service/hlo_ordering.h" #include "tensorflow/compiler/xla/service/hlo_schedule.h" #include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h" #include "tensorflow/compiler/xla/statusor.h" namespace xla { // Forward declare classes defined below. class HeapAlgorithm; class NoFragmentationStatsHeap; // HeapSimulator assigns buffer offsets by running a simulation of a regular // memory heap with Alloc and Free calls. It only works for completely // sequential instruction sequences. Unlike regular heaps, we have the // advantage that the sequence of Alloc and Free calls is known up-front; we // don't need to return the assignment of buffer offsets until the very end. class HeapSimulator { public: // Chunk represents a contiguous piece of memory. Each BufferValue will be // associated with a chunk in the assignment result. struct Chunk { int64 offset; int64 size; int64 chunk_end() const { return offset + size; } }; // Result represents the result of the heap simulation. struct Result { // The assignment of buffers to chunks. absl::flat_hash_map chunk_map; // The total size in bytes of the heap, containing all assigned chunks. int64 heap_size = 0; // The total size in bytes of heap fragmentation. int64 fragmentation_size = 0; // A trace of heap simulation events. HeapSimulatorTrace debug_trace; }; // The different options to be passed to the Run() APIs. struct Options { Options() : may_reuse_operand_buffers(true), alloc_constants(false), buffers_to_assign(nullptr) {} // Whether a buffer about to be Free()-ed, can be recycled for a new born // one, hence collapsing Free()+Alloc() calls (default true). bool may_reuse_operand_buffers; // Whether to issue Alloc() and Free() calls for constants (default false). bool alloc_constants; // If 'buffers_to_assign' is provided, only those buffers are assigned // offsets, otherwise all buffers defined by the instructions are assigned. const BufferValueFlatSet* buffers_to_assign; }; // Returns the minimum memory required to compute an HLO module where all // computations have been scheduled (represented by the given // schedule), assuming no fragmentation. static StatusOr MinimumMemoryForModule( const HloSchedule& schedule, const LogicalBuffer::SizeFunction& size_function); // Returns the minimum memory required to compute the given computation, // assuming no fragmentation. static StatusOr MinimumMemoryForComputation( const HloComputation& computation, const HloInstructionSequence& sequence, const TuplePointsToAnalysis& points_to_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_map* memory_by_computation = nullptr); // Run the heap simulation with the given algorithm, assuming the given // schedule, which must contain a topologically-consistent total // ordering of all instructions within each computation. The result is invalid // if instructions are not run in exactly this sequence. // // Running heap simulation on the whole module tends to save memory, compared // to running on a per-computation basis, since we can re-use buffer space for // called sub-computations. // static StatusOr Run(std::unique_ptr algorithm, const HloModule& module, const HloSchedule& schedule, const TuplePointsToAnalysis& points_to_analysis, const BufferValue::SizeFunction& size_fn, const Options& options = Options()); // Same as above, but runs on a single computation. The 'instruction_sequence' // must contain a topologically-consistent total ordering of all instructions // in the computation. The result is invalid if instructions are not run in // exactly this sequence. static StatusOr Run( std::unique_ptr algorithm, const HloComputation& computation, const HloInstructionSequence& instruction_sequence, const TuplePointsToAnalysis& points_to_analysis, const BufferValue::SizeFunction& size_fn, const Options& options = Options(), const absl::flat_hash_map* memory_by_computation = nullptr); private: // If 'schedule' is non-null, it is used to find kCall and kWhile // sub-computations, and the heap simulation for those sub-computations will // be run recursively. I.e. the simulation is run over the whole module. HeapSimulator(std::unique_ptr algorithm, const BufferValue::SizeFunction& size_fn, const Options& options, const HloSchedule* schedule = nullptr, const absl::flat_hash_map* memory_by_computation = nullptr); ~HeapSimulator(); Status RunComputation(const HloComputation& computation, const HloInstructionSequence& instruction_sequence, const TuplePointsToAnalysis& points_to_analysis); bool IgnoreBuffer(const BufferValue* buffer) const; void Alloc(const BufferValue* buffer, const HloInstruction* instruction); void Free(const BufferValue* buffer, const HloInstruction* instruction); void ShareBuffer(const BufferValue* buffer, const BufferValue* shared, const HloInstruction* instruction); Result Finish(); void FillDebugTrace(HeapSimulatorTrace::Event::Kind kind, const BufferValue* buffer, const HloInstruction* instruction, const BufferValue* shared_with_canonical); // Counterintuitive: the algorithm_ itself can be a NoFragmentationStatsHeap, // in which case we are calculating the same allocs/frees twice in the // simulation. const std::unique_ptr no_fragmentation_stats_; const std::unique_ptr algorithm_; const BufferValue::SizeFunction size_fn_; const Options options_; // schedule_ is set by buffer assignment, and memory_by_computation_ is // set by hlo scheduling. Then, in RunComputation, we check both in order to // handle subcomputations. It would be good to unify the handling of // subcomputations, but it's not clear how. const HloSchedule* schedule_; const absl::flat_hash_map* memory_by_computation_; // In addition to Alloc and Free, the heap simulator exposes a concept of // buffer sharing. When ShareBuffer is called, instead of allocating new // space for the buffer, it associates the buffer with a previously allocated // (or shared) buffer. Each group of mutually-shared buffers points to a // single SharedGroup instance, which is a shared control block. // // This forced buffer sharing is hidden from the underlying heap algorithm, // which only sees a regular Alloc call on the canonical buffer. The // corresponding Free call is delayed until the liveness of all shared buffers // in the group has expired, which is tracked via the refcount. The results // are post-processed in Finish to add chunks for shared buffers. // // The shared_buffers_ map associates each shared buffer (including the // canonical) to its SharedGroup control block. struct SharedGroup { const BufferValue* canonical = nullptr; int64 refcount = 0; }; absl::flat_hash_map> shared_buffers_; // Hold some sets for error-checking the sequence of Alloc and Free calls. absl::flat_hash_set allocated_buffers_; absl::flat_hash_set freed_buffers_; // Debugging information filled in while the heap simulator runs. HeapSimulatorTrace debug_trace_; }; // Abstract base class describing a heap simulation algorithm that assigns // offsets to buffers. A sequence of Alloc / Free calls will be made, with the // same semantics as a regular memory heap. Finish will be called at the end to // collect the simulation results. class HeapAlgorithm { public: using Chunk = HeapSimulator::Chunk; using Result = HeapSimulator::Result; virtual ~HeapAlgorithm() = default; // Alloc allocates a buffer of 'size' bytes. virtual void Alloc(const BufferValue* buffer, int64 size) = 0; // Takes memory usage of subcomputations into account when calculating the // memory usage of a computation. Currently, we don't handle buffer aliasing // between computations entirely correctly. We are careful to not double count // for the output buffers of whiles/conds/calls. But we don't take into // account other aliases, such as for the while init. A more thorough solution // would require something like BufferAssignment::BuildColocatedBufferSets. // TODO(b/65835246): // Since TuplePointsToAnalysis is being replaced with a module-aware alias // analysis, it's not worth making major changes to HeapSimulator now. virtual void AccountForSubcomputationMemory( const HloInstruction* instruction, // The total number of bytes allocated by instruction. int64 alloc_size_by_instruction, const absl::flat_hash_map& memory_by_computation) {} // Free de-allocates a previously allocated buffer. virtual void Free(const BufferValue* buffer, int64 size) = 0; // Finish collects the buffer offset assignment results. Free may only be // called once, after the Alloc and Free calls. virtual Result Finish() = 0; }; // NoFragmentationStatsHeap computes the heap size assuming no fragmentation; // this is the absolute minimum size for a given instruction sequence. The // result.chunk_map returned in Finish is always empty, since we only collect // stats, and don't actually compute chunk assignments. class NoFragmentationStatsHeap : public HeapAlgorithm { public: NoFragmentationStatsHeap() = default; ~NoFragmentationStatsHeap() override = default; void Alloc(const BufferValue* buffer, int64 size) override; void AccountForSubcomputationMemory( const HloInstruction* instruction, int64 alloc_size_by_instruction, const absl::flat_hash_map& memory_by_computation) override; void Free(const BufferValue* buffer, int64 size) override; Result Finish() override; private: int64 current_heap_size_ = 0; int64 max_heap_size_ = 0; }; // DecreasingSizeRunsHeap collects runs of Alloc and Free calls, sorts them by // decreasing size, and delegates the actual calls to another heap algorithm. // This greedy heuristic tends to reduce fragmentation for all algorithms. class DecreasingSizeRunsHeap : public HeapAlgorithm { public: DecreasingSizeRunsHeap(std::unique_ptr algorithm) : algorithm_(std::move(algorithm)) {} ~DecreasingSizeRunsHeap() override {} void Alloc(const BufferValue* buffer, int64 size) override; void Free(const BufferValue* buffer, int64 size) override; Result Finish() override; private: // A single Alloc or Free operation that we've buffered in run_. struct Op { const BufferValue* buffer; int64 size; }; // Current collection mode; kInit means no ops have been collected yet. enum Mode { kInit, kAlloc, kFree }; void SetMode(Mode mode); void CallAndDrainRun(); const std::unique_ptr algorithm_; std::vector run_; Mode mode_ = kInit; }; // LazyBestFitHeap is a variant of the traditional best-fit heap. This is a // greedy heuristic, based on the idea that delaying offset assignment helps // reduce fragmentation. Here's an example of a "bad" offset assignment, where // a tiny buffer A prevents adjacent free chunks from being coalesced: // BAD: | free |A| free | // If we could have delayed the assignment of A, we might have ended up with: // GOOD: | free |A| // // In general it's actually hard to say whether GOOD is better than BAD; the // heuristic we use is we try to leave large contiguous chunks free, and we try // to avoid growing the overall heap size unless necessary. // // Just like regular best-fit, in Alloc we look for the smallest free chunk that // fits the requested size. Unlike regular best-fit, we postpone offset // assignment for buffers that cannot re-use existing free chunks (and force us // to grow the heap); these buffers are "lazily" assigned offsets in Free. class LazyBestFitHeap : public HeapAlgorithm { public: LazyBestFitHeap(int64 alignment) : alignment_(alignment) {} ~LazyBestFitHeap() override {} void Alloc(const BufferValue* buffer, int64 size) override; void Free(const BufferValue* buffer, int64 size) override; Result Finish() override; private: // Sentry value used to indicate a chunk that wasn't assigned an offset in // Alloc, and will instead be assigned an offset in Free. enum { kLazyAllocOffset = -1 }; struct OrderChunkByIncreasingSize { bool operator()(const Chunk& a, const Chunk& b) const { if (a.size != b.size) return a.size < b.size; return a.offset < b.offset; } }; void AddFreeChunk(int64 offset, int64 size); const int64 alignment_; Result result_; // Maintain the set of free chunks, ordered by increasing size. std::set free_; }; // GlobalDecreasingSizeBestFitHeap collects the live intervals of all buffers, // then allocates them in decreasing sizes regardless of the alloc/free time. It // internally tracks the allocated buffers and their live intervals; when // allocating a buffer, it finds the best-fit free chunk during its live // interval. class GlobalDecreasingSizeBestFitHeap : public HeapAlgorithm { public: GlobalDecreasingSizeBestFitHeap(int64 alignment) : alignment_(alignment) {} ~GlobalDecreasingSizeBestFitHeap() override {} void Alloc(const BufferValue* buffer, int64 size) override; void Free(const BufferValue* buffer, int64 size) override; Result Finish() override; private: int64 alignment_; Result result_; // The current time represented as an integer. It increments by 1 at each // Alloc or Free call. int64 current_time_ = 0; // BufferInterval stores a buffer's size and time interval. struct BufferInterval { const BufferValue* buffer; int64 size; // Alloc time of the buffer. int64 start; // Free time of the buffer. int64 end; }; absl::flat_hash_map buffer_intervals_; }; // A heap algorithm that chooses the best results from other algorithms added to // it. class ChooseBestHeapAlgorithm : public HeapAlgorithm { public: ChooseBestHeapAlgorithm( std::unique_ptr>> algorithms) : algorithms_(std::move(*algorithms)) {} ~ChooseBestHeapAlgorithm() override {} void Alloc(const BufferValue* buffer, int64 size) override { for (auto& algorithm : algorithms_) { algorithm->Alloc(buffer, size); } } void Free(const BufferValue* buffer, int64 size) override { for (auto& algorithm : algorithms_) { algorithm->Free(buffer, size); } } Result Finish() override; private: std::vector> algorithms_; }; } // namespace xla #endif // TENSORFLOW_COMPILER_XLA_SERVICE_HEAP_SIMULATOR_H_