/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/xla/service/gpu/gpu_layout_assignment.h" #include #include "tensorflow/compiler/xla/layout_util.h" #include "tensorflow/compiler/xla/service/gpu/ir_emission_utils.h" #include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h" #include "tensorflow/compiler/xla/service/hlo_casting_utils.h" #include "tensorflow/compiler/xla/service/hlo_computation.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" #include "tensorflow/compiler/xla/service/hlo_instructions.h" #include "tensorflow/compiler/xla/status_macros.h" #include "tensorflow/compiler/xla/window_util.h" #include "tensorflow/compiler/xla/xla_data.pb.h" #include "tensorflow/core/lib/core/errors.h" namespace xla { namespace gpu { using se::dnn::DataLayout; using se::dnn::FilterLayout; // Returns (input, filter, output) layouts. static std::tuple HeuristicLayoutAssignment(const HloInstruction* instr, se::StreamExecutor* stream_executor) { // DataLayout and FilterLayout uses weird enum names. Translations: // N <=> Batch or Output // C <=> Depth or Input // H <=> Y // W <=> X // // Therefore kOutputInputYX and kBatchDepthYX mean NCHW. // // If you have trouble keeping these straight, consider that all that matters // is the location of the channel dim: Is it major (NCHW), or minor (NHWC)? constexpr auto kAllNCHW = std::make_tuple(DataLayout::kBatchDepthYX, FilterLayout::kOutputInputYX, DataLayout::kBatchDepthYX); constexpr auto kAllNHWC = std::make_tuple(DataLayout::kBatchYXDepth, FilterLayout::kOutputYXInput, DataLayout::kBatchYXDepth); // If we're not Volta or not fp16, the decision is easy: Use NCHW. if (!(instr->operand(0)->shape().element_type() == xla::PrimitiveType::F16 && IsVoltaOrLater(*stream_executor))) { return kAllNCHW; } VLOG(2) << "Using heuristic to figure out layouts for " << instr->ToString(); // Empirically we've found with Volta and cudnn 7 that backward-input convs // with stride are significantly faster with NCHW layouts. // // We could have used a mixed layout combination, e.g. (NHWC, NCHW, NCHW), // which on paper gives good performance. However, there are two observations: // * a mixed layout combination is more cuDNN-bug prone, based on empirical // envidence. // * we've also observed that for mixed layouts, cuDNN transposes data back // and forth from a different layout combination. If we end up with // transposes anyway, we prefer to have them in XLA, as they can be fused. // TODO(timshen): Figure out the exact condition. This may be achieved by // auto-tuning layouts offline. if (instr->custom_call_target() == kCudnnConvBackwardInputCallTarget && window_util::HasStride(instr->window())) { return kAllNCHW; } // For other Volta f16 convolutions, use NHWC. return kAllNHWC; } // Adds layout constraints on the cudnn custom-call instruction. The layout // constraints are represented in terms of minor_to_major fields of both // operands and the output shape. Depending on the underlying algorithm, one of // { NCHW, NHWC } ^ 3 = 8 different layout combinations may be chosen. Status GpuLayoutAssignment::AddBackendConstraintsToDnnConvCustomCall( HloCustomCallInstruction* instr, LayoutConstraints* constraints) { Shape lhs_shape = instr->operand(0)->shape(); Shape rhs_shape = instr->operand(1)->shape(); Shape result_shape = instr->shape().tuple_shapes(0); Shape* input_shape; Shape* filter_shape; Shape* output_shape; TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(instr)); switch (kind) { case CudnnConvKind::kForward: case CudnnConvKind::kForwardActivation: input_shape = &lhs_shape; filter_shape = &rhs_shape; output_shape = &result_shape; break; case CudnnConvKind::kBackwardInput: input_shape = &result_shape; filter_shape = &rhs_shape; output_shape = &lhs_shape; break; case CudnnConvKind::kBackwardFilter: input_shape = &lhs_shape; filter_shape = &result_shape; output_shape = &rhs_shape; break; } { DataLayout input; FilterLayout filter; DataLayout output; std::tie(input, filter, output) = HeuristicLayoutAssignment(instr, stream_executor_); TF_ASSIGN_OR_RETURN( std::tie(*input_shape->mutable_layout(), *filter_shape->mutable_layout(), *output_shape->mutable_layout()), StreamExecutorConvLayoutsToXlaLayouts( instr->convolution_dimension_numbers(), input, filter, output)); } // The custom call returns a tuple of (actual_result, scratch_buffer); // call_result_buf is the logical buffer for actual_result, the thing that // contains the result of the conv call. TF_ASSIGN_OR_RETURN(const LogicalBuffer* call_result_buf, constraints->points_to_analysis().GetBufferDefinedAt( instr, /*index=*/{0})); // Set layouts of the instructions' shapes. TF_RETURN_IF_ERROR(constraints->SetOperandLayout(lhs_shape, instr, 0)); TF_RETURN_IF_ERROR(constraints->SetOperandLayout(rhs_shape, instr, 1)); TF_RETURN_IF_ERROR( constraints->SetBufferLayout(result_shape.layout(), *call_result_buf)); // instr->operand(2), if exists, is the bias buffer. There is no need to // assign layout to it, as it has only one dimension. // instr->opernad(3), if exists, is the side input buffer. if (instr->operand_count() == 4) { if (kind != CudnnConvKind::kForwardActivation) { return InternalError( "Invalid convolution. Conv has a side input, but kind is not fused " "conv forward: %s", instr->ToString()); } // The side input layout must match the output layout. TF_RETURN_IF_ERROR(constraints->SetOperandLayout(*output_shape, instr, 3)); } return Status::OK(); } Status GpuLayoutAssignment::AddBackendConstraints( LayoutConstraints* constraints) { // Add convolution constraints in reverse postorder that the earliest // convolution layout propagates first. This reduces the likelihood of fusion // nodes with copies. auto post_order = constraints->computation()->MakeInstructionPostOrder(); for (auto iterator = post_order.rbegin(); iterator != post_order.rend(); ++iterator) { HloInstruction* instruction = *iterator; if (IsCustomCallToDnnConvolution(*instruction)) { TF_RETURN_IF_ERROR(AddBackendConstraintsToDnnConvCustomCall( Cast(instruction), constraints)); } // For batched dot we require the default layout. // TODO(b/112111608): This is overly conservative, the only real restriction // is that batch dimensions must be major. if (instruction->opcode() == HloOpcode::kDot && ImplementedAsGemm(*instruction) && instruction->dot_dimension_numbers().lhs_batch_dimensions_size() > 0) { // Verify that the batch dims come before the row and col dims. const DotDimensionNumbers& dim_nums = instruction->dot_dimension_numbers(); CHECK_EQ(dim_nums.lhs_batch_dimensions_size(), dim_nums.rhs_batch_dimensions_size()); CHECK_EQ(dim_nums.lhs_batch_dimensions_size() + 2, ShapeUtil::Rank(instruction->shape())); for (int64 batch_dim : dim_nums.lhs_batch_dimensions()) { CHECK_LT(batch_dim, ShapeUtil::Rank(instruction->shape()) - 2); } // Set both inputs and the output to default layout. Shape op0_shape = instruction->operand(0)->shape(); LayoutUtil::SetToDefaultLayout(&op0_shape); Shape op1_shape = instruction->operand(1)->shape(); LayoutUtil::SetToDefaultLayout(&op1_shape); Shape output_shape = instruction->shape(); LayoutUtil::SetToDefaultLayout(&output_shape); TF_RETURN_IF_ERROR( constraints->SetOperandLayout(op0_shape, instruction, 0)); TF_RETURN_IF_ERROR( constraints->SetOperandLayout(op1_shape, instruction, 1)); TF_RETURN_IF_ERROR( constraints->SetInstructionLayout(output_shape, instruction)); } } return Status::OK(); } Status GpuLayoutAssignment::PropagateOperandConstraint( const OperandLayoutConstraint& layout_constraint, LayoutConstraints* constraints) { const HloInstruction* instruction = layout_constraint.instruction(); // cudnn batchnorm forward inference's result must have the same layout as its // operand 0. if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == kCudnnBatchNormForwardInferenceCallTarget && layout_constraint.operand_no() == 0) { TF_RETURN_IF_ERROR(constraints->SetInstructionLayout( layout_constraint.shape_layout().shape(), instruction)); } // cudnn batchnorm forward training returns a tuple {output, mean, // inverse-stddev}. mean and inverse-stddev are rank 1 and so have only one // possible layout, but output is not (necessarily) rank 1, and, like in // batchnorm forward inference, must have the same layout as operand 0. if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == kCudnnBatchNormForwardTrainingCallTarget && layout_constraint.operand_no() == 0) { TF_ASSIGN_OR_RETURN(const LogicalBuffer* out_buf, constraints->points_to_analysis().GetBufferDefinedAt( instruction, /*index=*/{0})); TF_RETURN_IF_ERROR(constraints->SetBufferLayout( layout_constraint.shape_layout().layout(), *out_buf)); } // Like forward training, cudnn batchnorm backward returns a tuple {output, // mean, inverse-stddev}, and its operand 0 and 'output' must have the same // layout. In addition, its operand 0 and operand 4 -- the 'operand' and // 'grad_output' parameters -- must have the same layout. if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == kCudnnBatchNormBackwardCallTarget && (layout_constraint.operand_no() == 0 || layout_constraint.operand_no() == 4)) { TF_ASSIGN_OR_RETURN(const LogicalBuffer* out_buf, constraints->points_to_analysis().GetBufferDefinedAt( instruction, /*index=*/{0})); TF_RETURN_IF_ERROR(constraints->SetBufferLayout( layout_constraint.shape_layout().layout(), *out_buf)); int64 operand_to_set = layout_constraint.operand_no() == 0 ? 4 : 0; TF_RETURN_IF_ERROR(constraints->SetOperandLayout( layout_constraint.shape_layout().shape(), instruction, operand_to_set)); } return LayoutAssignment::PropagateOperandConstraint(layout_constraint, constraints); } Status GpuLayoutAssignment::PropagateBufferConstraint( const BufferLayoutConstraint& buffer_constraint, LayoutConstraints* constraints) { const LogicalBuffer& buf = buffer_constraint.buffer(); const HloInstruction* instruction = buf.instruction(); Shape shape_with_layout = buf.shape(); *shape_with_layout.mutable_layout() = buffer_constraint.layout(); // Propagate output constraints to the operands of cudnn batchnorm ops. This // is the same as PropagateOperandConstraint, just in the other direction. We // need to both to fulfill our contract to LayoutAssignment. if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == kCudnnBatchNormForwardInferenceCallTarget) { TF_RETURN_IF_ERROR(constraints->SetOperandLayout( shape_with_layout, instruction, /*operand_no=*/0)); } if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == kCudnnBatchNormForwardTrainingCallTarget && buf.index() == ShapeIndex({0})) { TF_RETURN_IF_ERROR(constraints->SetOperandLayout( shape_with_layout, instruction, /*operand_no=*/0)); } if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == kCudnnBatchNormBackwardCallTarget && buf.index() == ShapeIndex({0})) { // batchnorm backward has two operands, "operand" and "grad_output" whose // layouts must both match that of the result at tuple-index 0. TF_RETURN_IF_ERROR(constraints->SetOperandLayout( shape_with_layout, instruction, /*operand_no=*/0)); TF_RETURN_IF_ERROR(constraints->SetOperandLayout( shape_with_layout, instruction, /*operand_no=*/4)); } return LayoutAssignment::PropagateBufferConstraint(buffer_constraint, constraints); } } // namespace gpu } // namespace xla