/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/xla/service/gpu/cudnn_convolution_rewriter.h" #include #include #include #include "tensorflow/compiler/xla/literal.h" #include "tensorflow/compiler/xla/service/dfs_hlo_visitor_with_default.h" #include "tensorflow/compiler/xla/service/gpu/backend_configs.pb.h" #include "tensorflow/compiler/xla/service/gpu/ir_emission_utils.h" #include "tensorflow/compiler/xla/service/hlo_computation.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" #include "tensorflow/compiler/xla/util.h" #include "tensorflow/compiler/xla/window_util.h" #include "tensorflow/compiler/xla/xla_data.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" namespace xla { namespace gpu { namespace { HloInstruction* CreateCudnnConv(const char* call_target, const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, const Window& window, const ConvolutionDimensionNumbers& dnums, int64 feature_group_count) { HloComputation* computation = lhs->parent(); // This call returns a tuple of (conv_result, scratch_memory), where // conv_result is the actual result of the convolution, and scratch_memory is // temporary memory used by cudnn. // // At the moment, we don't know how much scratch memory this conv is going to // use, so we put u8[0] in this place. Later on another pass will choose // which conv algorithm to use, and at that point we'll modify the shape of // this second tuple element. Shape call_shape = ShapeUtil::MakeTupleShape({shape, ShapeUtil::MakeShape(U8, {0})}); HloInstruction* custom_call = computation->AddInstruction( HloInstruction::CreateCustomCall(call_shape, {lhs, rhs}, call_target)); custom_call->set_window(window); custom_call->set_convolution_dimension_numbers(dnums); custom_call->set_feature_group_count(feature_group_count); return custom_call; } bool CanImplementAsCudnnForwardConv(HloInstruction* conv) { const ConvolutionDimensionNumbers& dnums = conv->convolution_dimension_numbers(); if (dnums.input_spatial_dimensions_size() > 3) { return false; } // CuDNN does not accept zero-element arguments if (ShapeUtil::IsZeroElementArray(conv->operand(0)->shape()) || ShapeUtil::IsZeroElementArray(conv->operand(1)->shape())) { return false; } if (window_util::HasWindowReversal(conv->window())) { return false; } return true; } // Try to match a backward filter pattern that contains "conv". // Precondition: "conv" is a kConvolution. std::tuple MatchBackwardFilter( HloInstruction* conv) { const auto no_match_result = std::make_tuple(false, Window(), ConvolutionDimensionNumbers()); if (conv->feature_group_count() > 1) { return no_match_result; } // Step 1: match the instruction pattern without considering the paddings and // dimension numbers just yet. We may need some generic pattern matcher // similar to third_party/llvm/llvm/include/llvm/IR/PatternMatch.h // // Backward filter convolution is implemented in XLA as the forward // convolution of padded activations and dilated gradients. Padding on // activations and dilation on gradients are specified in the "window" field // of the forward convolution. // // activations gradients // \ / // v v // Convolution // conv CHECK_EQ(HloOpcode::kConvolution, conv->opcode()); // Step 2: match paddings and dimension numbers of the forward convolution. const ConvolutionDimensionNumbers& conv_dnums = conv->convolution_dimension_numbers(); auto input_batch_dim = conv_dnums.input_batch_dimension(); auto input_feature_dim = conv_dnums.input_feature_dimension(); auto input_spatial_dims = conv_dnums.input_spatial_dimensions(); auto kernel_input_feature_dim = conv_dnums.kernel_input_feature_dimension(); auto kernel_output_feature_dim = conv_dnums.kernel_output_feature_dimension(); auto kernel_spatial_dims = conv_dnums.kernel_spatial_dimensions(); auto output_batch_dim = conv_dnums.output_batch_dimension(); auto output_feature_dim = conv_dnums.output_feature_dimension(); auto output_spatial_dims = conv_dnums.output_spatial_dimensions(); for (const WindowDimension& window_dim : conv->window().dimensions()) { if (window_dim.stride() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have stride of 1."; return no_match_result; } if (window_dim.base_dilation() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have no base (LHS) dilation."; return no_match_result; } if (window_dim.padding_low() < 0) { VLOG(1) << "Padding low should be non-negative."; return no_match_result; } if (window_dim.window_reversal()) { VLOG(1) << "Window reversal field not supported"; return no_match_result; } // Padding high will be checked in Step 3. } if (input_batch_dim == output_batch_dim && !window_util::HasWindowDilation(conv->window())) { VLOG(1) << conv->ToString() << " is a regular forward convolution. No need " "to fold it to a backward filter convolution."; return no_match_result; } // Step 3: fuse the matched HLOs into a backward convolution instruction. // // Compute the window of the backward convolution. Window backward_conv_window; for (int i = 0; i < input_spatial_dims.size(); ++i) { WindowDimension* dim = backward_conv_window.add_dimensions(); // The window size of the backward convolution equals the output size of the // forward convolution. int64 filter_size = conv->shape().dimensions(output_spatial_dims[i]); dim->set_size(filter_size); // The window stride equals the window dilation of the forward convolution. dim->set_stride(conv->window().dimensions(i).window_dilation()); // The window's low padding is the same as the low padding of the // activations. dim->set_padding_low(conv->window().dimensions(i).padding_low()); int64 input_size = conv->operand(0)->shape().dimensions(input_spatial_dims[i]); int64 output_size = conv->window().dimensions(i).size(); // Compute the range of the amount of valid high padding. We first compute // min_padding_high, the amount of padding on the right/bottom to ensure the // last patch ends at the border, i.e., // // input_size + dim->padding_low() + min_padding_high // = (output_size - 1) * stride + filter_size // // Because convolution ignores trailing incomplete windows, any amount of // padding high from min_padding_high to min_padding_high+stride-1 // (max_padding_high) has the same effect. int64 padded_input_size = filter_size + (output_size - 1) * dim->stride(); int64 min_padding_high = padded_input_size - input_size - dim->padding_low(); int64 max_padding_high = min_padding_high + dim->stride() - 1; CHECK_GE(dim->padding_low(), 0); // In practice, since cuDNN convolution only supports even padding, we make // the amount of high padding the same as the amount of low padding as long // as it is between min_padding_high and max_padding_high. If it is not in // that range, we pick the one that's closest to dim->padding_low() and let // PadInsertion canonicalize the resultant backward convolution later. // Picking the closest one minimizes the cost of the kPad instruction to be // inserted by PadInsertion. if (dim->padding_low() >= min_padding_high && dim->padding_low() <= max_padding_high) { dim->set_padding_high(dim->padding_low()); } else { if (dim->padding_low() < min_padding_high) { dim->set_padding_high(min_padding_high); } else { dim->set_padding_high(max_padding_high); } } if (dim->padding_high() < 0) { LOG(ERROR) << "Fusing this pattern to backward filter convolution would cause " "negative padding (" << dim->padding_high() << ") on right/bottom of the weight gradients, which is not " "supported by PadInsertion (b/32744257). Falling back to " "unfused convolution for instruction: " << conv->ToString(); return no_match_result; } } // Restore the dimension numbers of the backward convolution from the forward // convolution. The two activation dimensions are reversed (batch and // feature). ConvolutionDimensionNumbers backward_conv_dnums; backward_conv_dnums.set_input_batch_dimension(input_feature_dim); backward_conv_dnums.set_input_feature_dimension(input_batch_dim); for (int i = 0; i < input_spatial_dims.size(); ++i) { backward_conv_dnums.add_input_spatial_dimensions(input_spatial_dims[i]); } backward_conv_dnums.set_output_batch_dimension(kernel_input_feature_dim); backward_conv_dnums.set_output_feature_dimension(kernel_output_feature_dim); for (int i = 0; i < kernel_spatial_dims.size(); ++i) { backward_conv_dnums.add_output_spatial_dimensions(kernel_spatial_dims[i]); } // The dimension numbering of the output of the forward convolution (before // transposition) is the same as that of the activations (according to the // semantics of kConvolution). The batch dimension of the activations should // be treated as the input feature dimension, and the feature dimension should // be treated as the output feature. backward_conv_dnums.set_kernel_input_feature_dimension(output_batch_dim); backward_conv_dnums.set_kernel_output_feature_dimension(output_feature_dim); for (int i = 0; i < output_spatial_dims.size(); ++i) { backward_conv_dnums.add_kernel_spatial_dimensions(output_spatial_dims[i]); } return std::make_tuple(true, backward_conv_window, backward_conv_dnums); } // Try to match a backward input pattern that contains "conv". // Precondition: "conv" is a kConvolution. std::tuple MatchBackwardInput(HloInstruction* conv) { const auto no_match_result = std::make_tuple(false, Window(), ConvolutionDimensionNumbers(), nullptr); // TODO(b/31709653): Theoretically cuDNN supports grouped convolutions also // for the backward input convolution, but at least for now with version 7.1.4 // it is slower. This needs to be re-evaluated for future cuDNN versions. // Note that we already have the necessary code down below, the only thing to // enable it is to remove the following early return. if (conv->feature_group_count() > 1) { return no_match_result; } // Match instruction pattern. CHECK_EQ(HloOpcode::kConvolution, conv->opcode()); HloInstruction* reverse_filter = conv->mutable_operand(1); ConvolutionDimensionNumbers dnums = conv->convolution_dimension_numbers(); // We pattern-match to a backwards input conv if: // // - all spatial dims of the filter are reversed // // OR // // - filter is 1x1 or a constant AND // - conv has base dilation (otherwise this is just a regular forward conv). // // The final criterion above is just for canonicalization; cudnn seems to run // just as fast if we canonicalize 1x1/constant filters without base dilation // to forward or backward convs. We canonicalize to forward conv because (a) // it's more natural (constant filters usually show up when doing inference, // and having backwards convolutions in inference graphs would be weird), and // (b) cudnn has special fusions for forward conv plus bias and activation, // and we want to pattern-match to that after running this pass. bool is_reversed_filter = reverse_filter->opcode() == HloOpcode::kReverse && absl::c_is_permutation(dnums.kernel_spatial_dimensions(), reverse_filter->dimensions()); bool is_1x1_filter = absl::c_all_of(conv->window().dimensions(), [](const WindowDimension& d) { return d.size() == 1; }); if (!is_reversed_filter && !(window_util::HasBaseDilation(conv->window()) && (reverse_filter->IsConstant() || is_1x1_filter))) { VLOG(1) << "Can't match to backwards convolution. Either filter is not " "kReverse, or it's not a base-dilated conv with a 1x1 or " "constant filter."; return no_match_result; } // Match padding and dilation of the forward convolution. for (const WindowDimension& window_dim : conv->window().dimensions()) { if (window_dim.stride() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have stride of 1."; return no_match_result; } if (window_dim.window_dilation() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have no window dilation."; return no_match_result; } if (window_dim.window_reversal()) { VLOG(1) << "Window reversal field not supported"; return no_match_result; } } const auto& input_spatial_dims = dnums.input_spatial_dimensions(); const auto& output_spatial_dims = dnums.output_spatial_dimensions(); CHECK_EQ(conv->window().dimensions().size(), input_spatial_dims.size()); CHECK_EQ(output_spatial_dims.size(), input_spatial_dims.size()); const Window& old_window = conv->window(); Window new_window = old_window; for (size_t i = 0; i < input_spatial_dims.size(); ++i) { // Restore backward convolution's padding config from the matched pattern. // See the comment in tensorflow/core/kernels/conv_grad_tuple_ops.cc // for how we convert backward input convolution to a variant of forward // convolution. // // The stride of the backward convolution // = the base dilation factor of the forward convolution auto dim = new_window.mutable_dimensions(i); dim->set_stride(old_window.dimensions(i).base_dilation()); // The low padding = kernel_size - 1 - low padding on the gradients // Make sure the low padding is not negative. auto kernel_size = old_window.dimensions(i).size(); auto backward_padding_low = kernel_size - 1 - old_window.dimensions(i).padding_low(); if (backward_padding_low < 0) { LOG(ERROR) << "The low padding of the backward convolution would be negative (" << backward_padding_low << "), which isn't supported by PadInsertion for now (b/32744257)."; return no_match_result; } dim->set_padding_low(backward_padding_low); // Compute the range of the amount of padding on the right/bottom of the // activations. XLA's convolution requires all patches to be within the // padded base. This gives us flexiblity to choose the amount of high // padding from a set of values without changing the result of the backward // convolution. The minimum amount (min_padding_high) makes the last patch // end at the border. The maximum amount (max_padding_high) equals // min_padding_high+stride-1 -- max_padding_high+1 would cause the output // size to change. auto unpadded_input_size = conv->shape().dimensions(output_spatial_dims[i]); auto output_size = conv->operand(0)->shape().dimensions(input_spatial_dims[i]); auto padded_input_size = kernel_size + dim->stride() * (output_size - 1); auto total_pad_size = padded_input_size - unpadded_input_size; auto min_padding_high = total_pad_size - backward_padding_low; auto max_padding_high = min_padding_high + dim->stride() - 1; if (backward_padding_low >= min_padding_high && backward_padding_low <= max_padding_high) { // In the best case (most likely), if backward_padding_low is in the range // of the amounts of valid high padding, we choose backward_padding_low // because cuDNN supports even padding only. dim->set_padding_high(backward_padding_low); } else { // Otherwise, we choose the amount that's closest to backward_padding_low, // and PadInsertion will later insert kSlice instructions to enforce even // padding. // // For example, consider the backward convolution pattern // // ab xy // | pad | reverse // .a.b yx // \ / // ABC // // The amount of low padding on activations (in backward convolution) is // backward_padding_low = kernel_size - 1 - forward_padding_low // = 2 - 1 - 1 = 0 // // The amount of padding high must be between 1 and 2, in order to make // Conv(ABC, xy, stride=2) produce exactly 2 elements (ab). 0 is not in // the range of [1,2], so we pick the closest valid amount of padding // high, which is 1 in this case. Therefore, we fuse the above pattern to // // ABC = BackwardInputConv(ab, xy, stride=2, padding_high=1) if (backward_padding_low < min_padding_high) { dim->set_padding_high(min_padding_high); } else { dim->set_padding_high(max_padding_high); } } // PadInsertion doesn't handle backward input convolution with negative // padding for now. So fall back to unfused convolution in case of negative // padding. For example, // ABCD = Conv(abc, reverse(xy), padding_high=2) // could be fused to // ABCD = BackwardInputConv(abc, xy, padding_low=1, padding_high=-1) // with positive padding low but negative padding high. if (dim->padding_high() < 0) { LOG(ERROR) << "Fusing this pattern to backward convolution would cause " "negative padding (" << dim->padding_high() << ") on right/bottom of the activations, which is not " "supported by PadInsertion (b/32744257). Falling back to " "unfused convolution for instruction: " << conv->ToString(); return no_match_result; } } // OK, it's a match! Switch the input feature dimension with the output // feature dimension. This is the way cuDNN expects it to be. dnums.set_kernel_input_feature_dimension( conv->convolution_dimension_numbers().kernel_output_feature_dimension()); dnums.set_kernel_output_feature_dimension( conv->convolution_dimension_numbers().kernel_input_feature_dimension()); // If we matched against a constant, we need to add a reverse op that can be // subsumed by the cuDNN call. algebraic-simplifier will later remove any // unnecessary reverses. if (reverse_filter->opcode() != HloOpcode::kReverse && reverse_filter->IsConstant()) { // Create a double-reverse, which is a nop. HloComputation* c = conv->parent(); reverse_filter = c->AddInstruction(HloInstruction::CreateReverse( reverse_filter->shape(), reverse_filter, AsInt64Slice(dnums.kernel_spatial_dimensions()))); reverse_filter = c->AddInstruction(HloInstruction::CreateReverse( reverse_filter->shape(), reverse_filter, AsInt64Slice(dnums.kernel_spatial_dimensions()))); TF_CHECK_OK(conv->ReplaceOperandWith(/*operand_no=*/1, reverse_filter)); } // Calculate the 'rhs' that goes into the backward input convolution. HloInstruction* rhs = reverse_filter; // One reverse is subsumed by the cuDNN call. if (rhs->opcode() == HloOpcode::kReverse) { rhs = rhs->mutable_operand(0); } if (conv->feature_group_count() == 1) { return std::make_tuple(true, new_window, dnums, rhs); } // Handle grouped convolutions. Because we swapped the input feature dimension // with the output feature dimension, we need to also reshape the kernel so // that the 'feature_group_count' parameter still makes sense. The // 'feature_group_count' parameter essentially specifies how often the // 'kernel_input_feature_dimension' is repeated. So when we swap these // dimensions, we need to divide the new 'kernel_input_feature_dimension' by // 'feature_group_count' and multiply the new // 'kernel_output_feature_dimension' by 'feature_group_count'. Shape new_shape = rhs->shape(); int64 input_feature_dimension = dnums.kernel_input_feature_dimension(); int64 output_feature_dimension = dnums.kernel_output_feature_dimension(); // In the backward convolution case, the spatial dimensions become the // feature dimensions, and we are guaranteed that the spatial dimensions are // adjacent. CHECK_EQ(std::abs(input_feature_dimension - output_feature_dimension), 1LL); int64 input_features = new_shape.dimensions(input_feature_dimension); int64 output_features = new_shape.dimensions(output_feature_dimension); new_shape.set_dimensions(input_feature_dimension, input_features / conv->feature_group_count()); new_shape.set_dimensions(output_feature_dimension, output_features * conv->feature_group_count()); HloComputation* c = conv->parent(); rhs = c->AddInstruction(HloInstruction::CreateReshape(new_shape, rhs)); return std::make_tuple(true, new_window, dnums, rhs); } CudnnConvBackendConfig GetDefaultBackendConfig() { CudnnConvBackendConfig config; config.set_conv_result_scale(1); return config; } // Tries to rewrite a single convolution into a call to cudnn. StatusOr RunOnInstruction(HloInstruction* conv) { CHECK_EQ(conv->opcode(), HloOpcode::kConvolution); HloInstruction* custom_call = [&]() -> HloInstruction* { bool match; Window window; ConvolutionDimensionNumbers dnums; HloInstruction* rhs; std::tie(match, window, dnums) = MatchBackwardFilter(conv); if (match) { return CreateCudnnConv(kCudnnConvBackwardFilterCallTarget, conv->shape(), conv->mutable_operand(0), conv->mutable_operand(1), window, dnums, conv->feature_group_count()); } std::tie(match, window, dnums, rhs) = MatchBackwardInput(conv); if (match) { return CreateCudnnConv(kCudnnConvBackwardInputCallTarget, conv->shape(), conv->mutable_operand(0), rhs, window, dnums, conv->feature_group_count()); } // If all else fails, try a forward convolution. if (CanImplementAsCudnnForwardConv(conv)) { return CreateCudnnConv( kCudnnConvForwardCallTarget, conv->shape(), conv->mutable_operand(0), conv->mutable_operand(1), conv->window(), conv->convolution_dimension_numbers(), conv->feature_group_count()); } return nullptr; }(); if (custom_call == nullptr) { return false; } TF_RETURN_IF_ERROR( custom_call->set_backend_config(GetDefaultBackendConfig())); VLOG(1) << "Replacing convolution " << conv->ToString() << " with " << custom_call->ToString(); // The CustomCall returns a tuple (conv_result, scratch_memory). Extract out // the conv result and replace `conv` with it. TF_RETURN_IF_ERROR(conv->parent()->ReplaceWithNewInstruction( conv, HloInstruction::CreateGetTupleElement(conv->shape(), custom_call, 0))); return true; } // Rewrites the convolutions in the given computation into calls to cudnn. // Returns true if it made any changes. StatusOr RunOnComputation(HloComputation* computation) { std::vector convs; for (auto* hlo : computation->instructions()) { if (hlo->opcode() == HloOpcode::kConvolution) { convs.push_back(hlo); } } bool changed = false; for (HloInstruction* conv : convs) { TF_ASSIGN_OR_RETURN(bool result, RunOnInstruction(conv)); changed |= result; } return changed; } } // namespace StatusOr CudnnConvolutionRewriter::Run(HloModule* module) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations()) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation)); changed |= result; } return changed; } } // namespace gpu } // namespace xla