/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/xla/reference_util.h" #include #include #include "absl/memory/memory.h" #include "tensorflow/compiler/xla/array2d.h" #include "tensorflow/compiler/xla/array3d.h" #include "tensorflow/compiler/xla/array4d.h" #include "tensorflow/compiler/xla/client/padding.h" #include "tensorflow/compiler/xla/literal.h" #include "tensorflow/compiler/xla/test.h" #include "tensorflow/compiler/xla/tests/literal_test_util.h" #include "tensorflow/compiler/xla/xla_data.pb.h" namespace xla { namespace { // Tests linear algebra routines implemented in ReferenceUtil class. // TODO(b/23829238): Currently missing tests for the convolution routine. class ReferenceUtilTest : public ::testing::Test { protected: ReferenceUtilTest() { matrix_ = absl::make_unique>(rows_, cols_); // [1.f 2.f 3.f] // [4.f 5.f 6.f] for (int64 i = 0; i < rows_; ++i) { for (int64 j = 0; j < cols_; ++j) { (*matrix_)(i, j) = i * cols_ + j + 1; } } } const int64 rows_ = 2; const int64 cols_ = 3; std::unique_ptr> matrix_; }; TEST_F(ReferenceUtilTest, TransposeArray2D) { auto result = ReferenceUtil::TransposeArray2D(*matrix_); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near({{1.f, 4.f}, {2.f, 5.f}, {3.f, 6.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MatmulArray2D) { Array2D rhs({ {7.f, 8.f}, {9.f, 10.f}, {11.f, 12.f}, }); auto result = ReferenceUtil::MatmulArray2D(*matrix_, rhs); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near({{58.f, 64.f}, {139.f, 154.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ReduceToColArray2D) { auto add = [](float lhs, float rhs) { return lhs + rhs; }; auto result = ReferenceUtil::ReduceToColArray2D(*matrix_, 0.0f, add); auto actual_literal = LiteralUtil::CreateR1(*result); LiteralTestUtil::ExpectR1Near({6.f, 15.f}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ReduceToRowArray2D) { auto add = [](float lhs, float rhs) { return lhs + rhs; }; auto result = ReferenceUtil::ReduceToRowArray2D(*matrix_, 0.0f, add); auto actual_literal = LiteralUtil::CreateR1(*result); LiteralTestUtil::ExpectR1Near({5.f, 7.f, 9.f}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, Reduce4Dto1DZeroSizedArray) { auto result = LiteralUtil::CreateR1(ReferenceUtil::Reduce4DTo1D( Array4D(1, 0, 1, 1), /*init=*/0, /*dims=*/{0, 1, 2}, [](float a, float b) { return a + b; })); LiteralTestUtil::ExpectR1Equal({0}, result); } TEST_F(ReferenceUtilTest, MapArray2D) { auto identity = [](float value) { return log(exp(value)); }; auto result = ReferenceUtil::MapArray2D(*matrix_, identity); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2NearArray2D(*matrix_, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapWithIndexArray2D) { auto add_index = [](float value, int64 row, int64 col) { return value + row + col; }; auto result = ReferenceUtil::MapWithIndexArray2D(*matrix_, add_index); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near({{1.f, 3.f, 5.f}, {5.f, 7.f, 9.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapArray4D) { auto input = absl::make_unique>(/*planes=*/2, /*depth=*/3, /*height=*/4, /*width=*/5); input->FillWithMultiples(1.0f); auto multiply_by_two = [](float value) { return 2 * value; }; auto result = ReferenceUtil::MapArray4D(*input, multiply_by_two); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); Array4D expected(/*planes=*/2, /*depth=*/3, /*height=*/4, /*width=*/5); expected.FillWithMultiples(2.0f); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapWithIndexArray4D) { auto input = absl::make_unique>(/*planes=*/2, /*depth=*/3, /*height=*/4, /*width=*/5); input->FillWithMultiples(1.0f); auto subtract_index = [](float value, int64 plane, int64 depth, int64 height, int64 width) { return value - (3 * 4 * 5 * plane + 4 * 5 * depth + 5 * height + width); }; auto result = ReferenceUtil::MapWithIndexArray4D(*input, subtract_index); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); Array4D expected(/*planes=*/2, /*depth=*/3, /*height=*/4, /*width=*/5); expected.Fill(0.0f); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray2D) { auto result = ReferenceUtil::Slice2D(*matrix_, {{0, 0}}, {{2, 2}}, {{1, 1}}); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near({{1.f, 2.f}, {4.f, 5.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray2D) { auto result = ReferenceUtil::Slice2D(*matrix_, {{0, 0}}, {{2, 3}}, {{1, 2}}); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near({{1.f, 3.f}, {4.f, 6.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray3D) { Array3D input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::Slice3D(input, {{0, 0, 0}}, {{2, 2, 2}}, {{1, 1, 1}}); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3Near( {{{0.f, 1.f}, {4.f, 5.f}}, {{12.f, 13.f}, {16.f, 17.f}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray3D) { Array3D input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::Slice3D(input, {{0, 0, 0}}, {{2, 3, 4}}, {{1, 2, 2}}); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3Near( {{{0.f, 2.f}, {8.f, 10.f}}, {{12.f, 14.f}, {20.f, 22.f}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray4D) { Array4D input(2, 3, 4, 5); input.FillIota(0); auto result = ReferenceUtil::Slice4D(input, {{1, 0, 0, 0}}, {{2, 2, 2, 2}}, {{1, 1, 1, 1}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); LiteralTestUtil::ExpectR4Near( {{{{60.f, 61.f}, {65.f, 66.f}}, {{80.f, 81.f}, {85.f, 86.f}}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray4D) { Array4D input(2, 3, 4, 5); input.FillIota(0); auto result = ReferenceUtil::Slice4D(input, {{1, 0, 0, 0}}, {{2, 3, 4, 5}}, {{1, 2, 2, 2}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); LiteralTestUtil::ExpectR4Near( {{{{60.f, 62.f, 64.f}, {70.f, 72.f, 74.f}}, {{100.f, 102.f, 104.f}, {110.f, 112.f, 114.f}}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvArray3DWithSamePadding) { Array3D input = {{{1, 2, 3, 4}}}; Array3D weights = {{{5, 6}}}; std::unique_ptr> actual = ReferenceUtil::ConvArray3D(input, weights, 1, Padding::kSame); Array3D expected = {{{17, 28, 39, 20}}}; auto actual_literal = LiteralUtil::CreateR3FromArray3D(*actual); LiteralTestUtil::ExpectR3NearArray3D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvArray3DWithValidPadding) { Array3D input = {{{1, 2, 3, 4}}}; Array3D weights = {{{5, 6}}}; std::unique_ptr> actual = ReferenceUtil::ConvArray3D(input, weights, 1, Padding::kValid); Array3D expected = {{{17, 28, 39}}}; auto actual_literal = LiteralUtil::CreateR3FromArray3D(*actual); LiteralTestUtil::ExpectR3NearArray3D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvWithSamePadding) { Array4D input(1, 1, 4, 4); // clang-format off input.FillWithYX(Array2D({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); // clang-format on Array4D weights(1, 1, 2, 2); // clang-format off weights.FillWithYX(Array2D({ {5, 6}, {7, 8}, })); // clang-format on std::unique_ptr> actual = ReferenceUtil::ConvArray4D(input, weights, {1, 1}, Padding::kSame); Array4D expected(1, 1, 4, 4); // clang-format off expected.FillWithYX(Array2D({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); // clang-format on auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvWithValidPadding) { Array4D input(1, 1, 4, 4); // clang-format off input.FillWithYX(Array2D({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); // clang-format on Array4D weights(1, 1, 2, 2); // clang-format off weights.FillWithYX(Array2D({ {5, 6}, {7, 8}, })); // clang-format on std::unique_ptr> actual = ReferenceUtil::ConvArray4D(input, weights, {1, 1}, Padding::kValid); Array4D expected(1, 1, 3, 3); // clang-format off expected.FillWithYX(Array2D({ {1*5+2*6+5*7+6*8, 126, 152}, {204, 230, 256}, {308, 334, 11*5+12*6+15*7+16*8}, })); // clang-format on auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvGeneralDimensionsWithSamePadding) { // clang-format off // Input dimensions: [feature=2, height=3, batch=1, width=4] Array4D input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); // Weight dimensions: // [kernel_output_feature=1, height=3, kernel_input_feature=2, width=3] Array4D weight({{ {{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}, {{13, 14, 15}, {16, 17, 18}} }}); // clang-format on // Set the convolution dimension numbers. ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(2); dimension_numbers.set_input_feature_dimension(0); dimension_numbers.set_output_batch_dimension(2); dimension_numbers.set_output_feature_dimension(0); dimension_numbers.add_input_spatial_dimensions(1); dimension_numbers.add_output_spatial_dimensions(1); dimension_numbers.add_input_spatial_dimensions(3); dimension_numbers.add_output_spatial_dimensions(3); dimension_numbers.set_kernel_output_feature_dimension(0); dimension_numbers.set_kernel_input_feature_dimension(2); dimension_numbers.add_kernel_spatial_dimensions(1); dimension_numbers.add_kernel_spatial_dimensions(3); std::unique_ptr> actual = ReferenceUtil::ConvArray4DGeneralDimensions( input, weight, {1, 1}, Padding::kSame, dimension_numbers); // clang-format off // Result dimensions: [feature=1, height=3, batch=1, width=4] Array4D expected({{ {{1110, 1688, 1838, 1226}}, {{1683, 2514, 2685, 1761}}, {{878, 1280, 1358, 866}} }}); // clang-format on auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvGeneralDimensionsWithValidPadding) { // clang-format off // Input dimensions: [feature=2, height=3, batch=1, width=4] Array4D input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); // Weight dimensions: // [kernel_output_feature=1, width=3, kernel_input_feature=2, height=3] Array4D weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); // clang-format on // Set the convolution dimension numbers. ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(2); dimension_numbers.set_input_feature_dimension(0); dimension_numbers.set_output_batch_dimension(2); dimension_numbers.set_output_feature_dimension(0); dimension_numbers.add_input_spatial_dimensions(1); dimension_numbers.add_output_spatial_dimensions(1); dimension_numbers.add_input_spatial_dimensions(3); dimension_numbers.add_output_spatial_dimensions(3); dimension_numbers.set_kernel_output_feature_dimension(0); dimension_numbers.set_kernel_input_feature_dimension(2); dimension_numbers.add_kernel_spatial_dimensions(3); dimension_numbers.add_kernel_spatial_dimensions(1); std::unique_ptr> actual = ReferenceUtil::ConvArray4DGeneralDimensions( input, weight, {1, 1}, Padding::kValid, dimension_numbers); // clang-format off // Result dimensions: [feature=1, height=1, batch=1, width=2] Array4D expected({{{{2514, 2685}}}}); // clang-format on auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ApplyElementwise2D) { Array2D a({{1, 2}, {3, 4}}); Array2D b({{10, 20}, {30, 40}}); Array2D c({{100, 200}, {300, 400}}); auto actual = ReferenceUtil::ApplyElementwise2D( [](float x, float y, float z) { return 100 * x + 10 * y + z; }, a, b, c); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*actual); LiteralTestUtil::ExpectR2Near({{300.f, 600.f}, {900.f, 1200.f}}, actual_literal, ErrorSpec(0.0001)); } } // namespace } // namespace xla