# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for pooling operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import nn_ops from tensorflow.python.platform import googletest def NHWCToNCHW(input_tensor): """Convert the input from NHWC format to NCHW. Args: input_tensor: a 4-D tensor, or a 4-element array representing the same. Returns: the converted tensor or a shape array """ if isinstance(input_tensor, ops.Tensor): return array_ops.transpose(input_tensor, [0, 3, 1, 2]) else: return [input_tensor[0], input_tensor[3], input_tensor[1], input_tensor[2]] def NCHWToNHWC(input_tensor): """Convert the input from NCHW format to NHWC. Args: input_tensor: a 4-D tensor, or a 4-element array representing the same. Returns: the converted tensor or a shape array """ if isinstance(input_tensor, ops.Tensor): return array_ops.transpose(input_tensor, [0, 2, 3, 1]) else: return [input_tensor[0], input_tensor[2], input_tensor[3], input_tensor[1]] def GetTestConfigs(): """Get all the valid tests configs to run. Returns: all the valid test configs """ test_configs = ["NHWC", "NCHW"] return test_configs class PoolingTest(xla_test.XLATestCase): def _VerifyOneTest(self, pool_func, input_sizes, ksize, strides, padding, data_format, expected): """Verifies the output values of the pooling function. Args: pool_func: Function to be called, currently only co.MaxPool. input_sizes: Input tensor dimensions. ksize: The kernel size dimensions strides: The stride dimensions padding: Padding type. data_format: The data format we use to run the pooling operation. expected: An array containing the expected operation outputs. """ total_size = np.prod(input_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. x = np.array([f * 1.0 for f in range(1, total_size + 1)], dtype=np.float32) x = x.reshape(input_sizes) with self.cached_session() as sess: with self.test_scope(): inputs = array_ops.placeholder(dtypes.float32) t = inputs if data_format == "NCHW": t = NHWCToNCHW(t) ksize = NHWCToNCHW(ksize) strides = NHWCToNCHW(strides) t = pool_func(t, ksize=ksize, strides=strides, padding=padding, data_format=data_format) if data_format == "NCHW": t = NCHWToNHWC(t) actual = sess.run(t, {inputs: x}) self.assertAllClose(expected, actual.flatten(), rtol=1e-5, atol=1e-6) def _VerifyValues(self, pool_func, input_sizes, ksize, strides, padding, expected): """Verifies the output values of the pooling function. Args: pool_func: Function to be called, co.MaxPool, co.AvgPool, or the Lua version. input_sizes: Input tensor dimensions. ksize: The kernel size dimensions strides: The stride dimensions padding: Padding type. expected: An array containing the expected operation outputs. """ for data_format in GetTestConfigs(): self._VerifyOneTest(pool_func, input_sizes, ksize, strides, padding, data_format, expected) def testMaxPoolValidPadding(self): expected_output = [13.0, 14.0, 15.0] self._VerifyValues(nn_ops.max_pool, input_sizes=[1, 3, 3, 3], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID", expected=expected_output) def testMaxPoolSamePadding(self): expected_output = [13.0, 14.0, 15.0, 16.0, 17.0, 18.0] self._VerifyValues(nn_ops.max_pool, input_sizes=[1, 2, 3, 3], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", expected=expected_output) def testMaxPoolSamePaddingNonSquareWindow(self): # input is: # [1.0, 2.0 # 3.0 4.0] # # Window of [x, x] should do: # # [max(1.0, 2.0), max(2.0, padded0), # max(3.0, 4.0), max(4.0, padded0)] self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 2, 2, 1], ksize=[1, 1, 2, 1], strides=[1, 1, 1, 1], padding="SAME", expected=[2.0, 2.0, 4.0, 4.0]) def testMaxPoolValidPaddingUnevenStride(self): self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 4, 4, 1], ksize=[1, 2, 2, 1], strides=[1, 1, 2, 1], padding="VALID", expected=[6.0, 8.0, 10.0, 12.0, 14.0, 16.0]) self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 4, 4, 1], ksize=[1, 2, 2, 1], strides=[1, 2, 1, 1], padding="VALID", expected=[6.0, 7.0, 8.0, 14.0, 15.0, 16.0]) def testMaxPoolSamePaddingFilter4(self): expected_output = [ 21.0, 22.0, 23.0, 24.0, 29.0, 30.0, 31.0, 32.0, 53.0, 54.0, 55.0, 56.0, 61.0, 62.0, 63.0, 64.0 ] self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 4, 4, 4], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", expected=expected_output) def testMaxPoolSamePaddingFilter8(self): expected_output = [ 145.0, 146.0, 147.0, 148.0, 149.0, 150.0, 151.0, 152.0, 161.0, 162.0, 163.0, 164.0, 165.0, 166.0, 167.0, 168.0, 177.0, 178.0, 179.0, 180.0, 181.0, 182.0, 183.0, 184.0, 185.0, 186.0, 187.0, 188.0, 189.0, 190.0, 191.0, 192.0, 273.0, 274.0, 275.0, 276.0, 277.0, 278.0, 279.0, 280.0, 289.0, 290.0, 291.0, 292.0, 293.0, 294.0, 295.0, 296.0, 305.0, 306.0, 307.0, 308.0, 309.0, 310.0, 311.0, 312.0, 313.0, 314.0, 315.0, 316.0, 317.0, 318.0, 319.0, 320.0, 401.0, 402.0, 403.0, 404.0, 405.0, 406.0, 407.0, 408.0, 417.0, 418.0, 419.0, 420.0, 421.0, 422.0, 423.0, 424.0, 433.0, 434.0, 435.0, 436.0, 437.0, 438.0, 439.0, 440.0, 441.0, 442.0, 443.0, 444.0, 445.0, 446.0, 447.0, 448.0, 465.0, 466.0, 467.0, 468.0, 469.0, 470.0, 471.0, 472.0, 481.0, 482.0, 483.0, 484.0, 485.0, 486.0, 487.0, 488.0, 497.0, 498.0, 499.0, 500.0, 501.0, 502.0, 503.0, 504.0, 505.0, 506.0, 507.0, 508.0, 509.0, 510.0, 511.0, 512.0 ] self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 8, 8, 8], ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding="SAME", expected=expected_output) # Tests for DepthwiseMaxPooling on CPU only. def testDepthwiseMaxPool1x1DepthWindow1(self): # input is: # [1.0, ..., 10.0] along depth, # # We maxpool by depth in patches of 2. self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 1, 1, 10], ksize=[1, 1, 1, 2], strides=[1, 1, 1, 2], padding="SAME", expected=[2.0, 4.0, 6.0, 8.0, 10.0]) def testDepthwiseMaxPool2x2DepthWindow3(self): # input is: # # a 2x2x6 cube, and we depthwise max across 3 to produce a 2x2x2 # output. Each node has contiguous values, so the depthwise max # should be multiples of 3.0. self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 2, 2, 6], ksize=[1, 1, 1, 3], strides=[1, 1, 1, 3], padding="SAME", expected=[3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0]) def testKernelSmallerThanStrideValid(self): self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 7, 7, 1], ksize=[1, 2, 2, 1], strides=[1, 3, 3, 1], padding="VALID", expected=[9, 12, 30, 33]) def testKernelSmallerThanStrideSame(self): self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 3, 3, 1], ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding="SAME", expected=[1, 3, 7, 9]) self._VerifyValues( nn_ops.max_pool, input_sizes=[1, 4, 4, 1], ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding="SAME", expected=[1, 3, 9, 11]) # Average pooling def testAvgPoolValidPadding(self): expected_output = [7, 8, 9] self._VerifyValues( nn_ops.avg_pool, input_sizes=[1, 3, 3, 3], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID", expected=expected_output) def testAvgPoolSamePadding(self): expected_output = [7., 8., 9., 11.5, 12.5, 13.5] self._VerifyValues( nn_ops.avg_pool, input_sizes=[1, 2, 3, 3], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", expected=expected_output) class PoolGradTest(xla_test.XLATestCase): CPU_DEVICE = "/job:localhost/replica:0/task:0/cpu:0" def _VerifyOneTest(self, pool_func, pool_grad_func, input_sizes, ksize, strides, padding, data_format, pool_grad_grad_func=None): """Verifies the output values of the pooling gradient function. Args: pool_func: Forward pooling function pool_grad_func: Pooling gradient function for pool_grad_func input_sizes: Input tensor dimensions. ksize: The kernel size dimensions strides: The stride dimensions padding: Padding type. data_format: The data format we use to run the pooling operation. pool_grad_grad_func: Second-order gradient function, if available. """ total_size = np.prod(input_sizes) # TODO(b/73062247): MaxPoolGradGrad can confuse gradients when x is equally # maximal at 16 bits. Switch to np.random.randn when resolved. x = np.arange(1, total_size + 1, dtype=np.float32) x *= (np.random.randint(2, size=total_size) * 2 - 1) # Flip signs randomly # Verify some specifically interesting values... x[np.random.choice(total_size)] = np.inf x[np.random.choice(total_size)] = -np.inf # TODO(b/74222344): Fix nan handling for max pool grad. # x[np.random.choice(total_size)] = np.nan x = x.reshape(input_sizes) with self.cached_session() as sess: # Use the forward pool function to compute some corresponding outputs # (needed for the CPU device, and we need the shape in both cases). with ops.device(self.CPU_DEVICE): inputs = array_ops.placeholder(dtypes.float32, shape=input_sizes) outputs = pool_func( inputs, ksize=ksize, strides=strides, padding=padding, data_format="NHWC") output_vals = np.array(sess.run(outputs, {inputs: x})) output_gradient_vals = np.arange( 1, output_vals.size + 1, dtype=np.float32) output_gradient_vals = output_gradient_vals.reshape(output_vals.shape) output_grad_grad_vals = np.arange(1, x.size + 1, dtype=np.float32) output_grad_grad_vals = output_grad_grad_vals.reshape(x.shape) # Use the Tensorflow CPU pooling gradient to compute the expected input # gradients. with ops.device(self.CPU_DEVICE): output_gradients = array_ops.placeholder( dtypes.float32, shape=output_vals.shape) expected_input_gradients = pool_grad_func( inputs, outputs, output_gradients, ksize=ksize, strides=strides, padding=padding, data_format="NHWC") expected_input_gradient_vals = sess.run( expected_input_gradients, {inputs: x, output_gradients: output_gradient_vals}) output_grad_gradients = array_ops.placeholder( dtypes.float32, shape=expected_input_gradient_vals.shape) if pool_grad_grad_func is not None: expected_grad_gradients = pool_grad_grad_func( inputs, outputs, output_grad_gradients, ksize=ksize, strides=strides, padding=padding, data_format="NHWC") expected_grad_gradients_vals = sess.run(expected_grad_gradients, { inputs: x, output_grad_gradients: output_grad_grad_vals }) # Run the gradient op on the XLA device with self.test_scope(): outputs = array_ops.placeholder(dtypes.float32, shape=output_vals.shape) xla_inputs = inputs xla_outputs = outputs xla_output_gradients = output_gradients xla_output_grad_gradients = output_grad_gradients xla_ksize = ksize xla_strides = strides if data_format == "NCHW": xla_inputs = NHWCToNCHW(inputs) xla_outputs = NHWCToNCHW(outputs) xla_output_gradients = NHWCToNCHW(output_gradients) xla_output_grad_gradients = NHWCToNCHW(output_grad_gradients) xla_ksize = NHWCToNCHW(ksize) xla_strides = NHWCToNCHW(strides) actual_input_gradients = pool_grad_func( xla_inputs, xla_outputs, xla_output_gradients, ksize=xla_ksize, strides=xla_strides, padding=padding, data_format=data_format) if data_format == "NCHW": actual_input_gradients = NCHWToNHWC(actual_input_gradients) if pool_grad_grad_func is not None: actual_grad_gradients = pool_grad_grad_func( xla_inputs, xla_outputs, xla_output_grad_gradients, ksize=xla_ksize, strides=xla_strides, padding=padding, data_format=data_format) if data_format == "NCHW": actual_grad_gradients = NCHWToNHWC(actual_grad_gradients) actual_input_gradients_vals = sess.run(actual_input_gradients, { inputs: x, outputs: output_vals, output_gradients: output_gradient_vals }) # Compare the Tensorflow and XLA results. self.assertAllClose( expected_input_gradient_vals, actual_input_gradients_vals, rtol=1e-4, atol=1e-6) self.assertShapeEqual(actual_input_gradients_vals, inputs) if pool_grad_grad_func is not None: actual_grad_gradients_vals = sess.run( actual_grad_gradients, { inputs: x, outputs: output_vals, output_grad_gradients: output_grad_grad_vals }) # Compare the Tensorflow and XLA results. self.assertAllClose( expected_grad_gradients_vals, actual_grad_gradients_vals, rtol=1e-4, atol=1e-6) self.assertShapeEqual(actual_grad_gradients_vals, outputs) def _VerifyValues(self, pool_func, pool_grad_func, input_sizes, ksize, strides, padding, pool_grad_grad_func=None): """Verifies the output values of the pooling function. Args: pool_func: Pooling function to be called, e.g., tf.nn.max_pool pool_grad_func: Corresponding pooling gradient function. input_sizes: Input tensor dimensions. ksize: The kernel size dimensions strides: The stride dimensions padding: Padding type. pool_grad_grad_func: Second-order gradient function, if available. """ for data_format in GetTestConfigs(): self._VerifyOneTest( pool_func, pool_grad_func, input_sizes, ksize, strides, padding, data_format, pool_grad_grad_func=pool_grad_grad_func) def _TestPooling(self, forward_op, backward_op, pool_grad_grad_func=None): # VALID padding self._VerifyValues( forward_op, backward_op, input_sizes=[1, 3, 3, 3], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID", pool_grad_grad_func=pool_grad_grad_func) # SAME padding self._VerifyValues( forward_op, backward_op, input_sizes=[1, 2, 3, 3], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", pool_grad_grad_func=pool_grad_grad_func) # SAME padding, non square window self._VerifyValues( forward_op, backward_op, input_sizes=[1, 2, 2, 1], ksize=[1, 1, 2, 1], strides=[1, 1, 1, 1], padding="SAME", pool_grad_grad_func=pool_grad_grad_func) # VALID padding, uneven stride self._VerifyValues( forward_op, backward_op, input_sizes=[1, 4, 4, 1], ksize=[1, 2, 2, 1], strides=[1, 1, 2, 1], padding="VALID", pool_grad_grad_func=pool_grad_grad_func) self._VerifyValues( forward_op, backward_op, input_sizes=[1, 4, 4, 1], ksize=[1, 2, 2, 1], strides=[1, 2, 1, 1], padding="VALID", pool_grad_grad_func=pool_grad_grad_func) # SAME padding, size 4 input self._VerifyValues( forward_op, backward_op, input_sizes=[1, 4, 4, 4], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", pool_grad_grad_func=pool_grad_grad_func) # SAME padding, size 8 input self._VerifyValues( forward_op, backward_op, input_sizes=[1, 8, 8, 8], ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding="SAME", pool_grad_grad_func=pool_grad_grad_func) def testMaxPool(self): self._TestPooling( nn_ops.max_pool, gen_nn_ops.max_pool_grad, pool_grad_grad_func=gen_nn_ops.max_pool_grad_grad) def testAvgPool(self): # Wrapper around AvgPoolGrad that ignores extra arguments needed by # MaxPoolGrad. def AvgPoolGrad(inputs, outputs, output_gradients, ksize, strides, padding, data_format): del outputs # Unused by average-pooling gradients. return gen_nn_ops.avg_pool_grad( inputs.get_shape().as_list(), output_gradients, ksize=ksize, strides=strides, padding=padding, data_format=data_format) self._TestPooling(nn_ops.avg_pool, AvgPoolGrad) # The CPU implementation of AvgPoolGrad doesn't accept kernels smaller than # the stride size, so we only run the following tests on MaxPoolGrad. def testMaxPoolKernelSmallerThanStrideValid(self): self._VerifyValues( nn_ops.max_pool, gen_nn_ops.max_pool_grad, input_sizes=[1, 7, 7, 1], ksize=[1, 2, 2, 1], strides=[1, 3, 3, 1], padding="VALID") def testMaxPoolKernelSmallerThanStrideSame(self): self._VerifyValues( nn_ops.max_pool, gen_nn_ops.max_pool_grad, input_sizes=[1, 3, 3, 1], ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding="SAME") self._VerifyValues( nn_ops.max_pool, gen_nn_ops.max_pool_grad, input_sizes=[1, 4, 4, 1], ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding="SAME") if __name__ == "__main__": googletest.main()