# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for JIT compilation on the CPU and GPU devices.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.contrib.compiler import jit from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.platform import test jit_scope = jit.experimental_jit_scope # Disable rewrites to make sure we don't end up having to update this test # whenever we implement new ones. def NoRewriteSessionConfig(): rewriter_config = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True, arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF, dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF, function_optimization=rewriter_config_pb2.RewriterConfig.OFF) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) return config_pb2.ConfigProto(graph_options=graph_options) def CompiledKernel(fn, *inputs, **kwargs): """Execute 'fn' as a compiled XLA kernel, with 'inputs'.""" name = kwargs.pop("name", None) noinline = kwargs.pop("noinline", None) @function.Defun(func_name=name, noinline=noinline, compiled=True) def Compiled(*args): return fn(*args) return Compiled(*inputs) def RunMetadataLabels(run_metadata): """Returns all labels in run_metadata.""" labels = [] for dev_stats in run_metadata.step_stats.dev_stats: for node_stats in dev_stats.node_stats: labels.append(node_stats.timeline_label) return labels def InLabels(labels, substr): """Returns true iff one of the labels contains substr.""" return any([substr in x for x in labels]) def MetadataHasXlaOp(run_metadata): """Returns true if there are XlaRun kernels in run_metadata's timeline.""" # TODO(phawkins): find a less hacky way to test whether a kernel ran. return InLabels(RunMetadataLabels(run_metadata), "XlaRun") class JitLaunchTest(test.TestCase): # Evaluates 'fn' on 'args' both directly and as a compiled XLA kernel. # Verifies that the outputs match and that XLA was invoked. 'fn' must take # the same number of tensors as arguments that are in 'args', and must return # a tuple of output tensors. # # If 'require_kernel_launch' is True, then we verify that an XlaCompile/XlaRun # node actually ran. However, it is sometimes possible for XlaCompile/XlaRun # ops to be constant-folded away, so the check is optional. def _compare(self, fn, args, require_kernel_launch=True, noinline=None): with session_lib.Session(config=NoRewriteSessionConfig()) as sess: placeholders = [] feeds = {} for arg in args: placeholder = array_ops.placeholder( dtypes.as_dtype(arg.dtype), list(arg.shape)) placeholders.append(placeholder) feeds[placeholder] = arg compiled_op = CompiledKernel(fn, *placeholders, noinline=noinline) direct_op = fn(*placeholders) run_metadata = config_pb2.RunMetadata() compiled = sess.run(compiled_op, feeds, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) print("Compiled Result {}".format(compiled)) if require_kernel_launch: self.assert_(MetadataHasXlaOp(run_metadata)) direct = sess.run(direct_op, feeds) print("Direct Result {}".format(direct)) if (isinstance(compiled, (tuple, list)) and (isinstance(direct, (tuple, list)))): for (x, y) in zip(compiled, direct): self.assertAllClose(x, y, rtol=1e-1) else: self.assertAllClose(compiled, direct, rtol=1e-2) def testNoOutputs(self): with session_lib.Session() as sess: # Check that calling the result as a compiled kernel doesn't crash. @function.Defun(compiled=True) def KernelWithNoOutputs(): a = constant_op.constant(100) # pylint: disable=unused-variable call = KernelWithNoOutputs() # pylint: disable=assignment-from-no-return sess.run(call, {}) def testAliasing(self): """Regression test for compiled functions that return an aliased buffer. XLA returns aliased buffers if outputs are identical. Tests that we handle that case. """ def AddOnceReturnTwice(x): y = math_ops.add(x, x) return y, y # Exercises compiling a function (say, Foo) which calls another function # (say, Bar) which is not inlined. When the compiler compiles Foo, it needs # to symbolically execute Bar correctly regardless of whether Bar is inlined # or not. # TODO(b/36139787): Re-enable this test when noinline works again. # Tests compiled=True and noinline=True. # self._compare( # AddOnceReturnTwice, [np.array( # [[[0.5, -1.0]]], dtype=np.float32)], # noinline=True) # Tests compiled=True and noinline=False. self._compare( AddOnceReturnTwice, [np.array( [[[0.5, -1.0]]], dtype=np.float32)], noinline=False) def testOneConstOutput(self): """Test consisting of a single constant return value.""" def OneConstOutput(): return constant_op.constant([-3, 44, 99]) self._compare(OneConstOutput, [], require_kernel_launch=False) def testConstZeroElementOutput(self): """Test consisting of a constant zero element return value.""" def ConstZeroElementOutput(): return array_ops.fill([7, 0], 3.0) self._compare(ConstZeroElementOutput, [], require_kernel_launch=False) def testSomeConstOutputs(self): """Test kernels that return a mixture of const and non-const outputs.""" def SomeConstOutputs(x): return constant_op.constant( [-2, 7]), array_ops.identity(x), constant_op.constant(3.5) self._compare( SomeConstOutputs, [np.array( [[1, 2, 3], [4, 5, 6]], dtype=np.float32)]) def testInt32Input(self): """Test an int32-typed input. On a GPU, int32 tensors will be placed in host memory. """ def AddToSelf(x): return math_ops.add(x, x) self._compare(AddToSelf, [np.array([7, 1, 3], dtype=np.int32)]) def testMandatoryConstantInput(self): """Tests an operator that has a mandatory-constant shape input.""" def FillWithFloat(x): return array_ops.fill(x, 9.5) self._compare(FillWithFloat, [np.array([3, 2], dtype=np.int32)]) def testMnistForwardFunc(self): """Compute inference function from MNIST beginners tutorial.""" batch_size = 16 image_size = 28 * 28 num_classes = 10 # Define a TensorFlow function to compute the forward pass. def MnistForward(w, b, x): return nn_ops.softmax(math_ops.matmul(x, w) + b) w = np.random.random_sample((image_size, num_classes)).astype(np.float32) b = np.random.random_sample((num_classes)).astype(np.float32) x = np.random.random_sample((batch_size, image_size)).astype(np.float32) self._compare(MnistForward, [w, b, x]) def testExplicitMarking(self): """Test explicit marking of operators to compile.""" batch_size = 16 image_size = 28 * 28 num_classes = 10 with ops.Graph().as_default(): x = array_ops.placeholder(dtypes.float32) w = array_ops.placeholder(dtypes.float32) b = array_ops.placeholder(dtypes.float32) with jit_scope(): y1 = math_ops.matmul(x, w) y2 = math_ops.add(y1, b) with jit_scope(): y = math_ops.square(y2) dw = np.random.random_sample((image_size, num_classes)).astype(np.float32) db = np.random.random_sample((num_classes)).astype(np.float32) dx = np.random.random_sample((batch_size, image_size)).astype(np.float32) with session_lib.Session() as sess: run_metadata = config_pb2.RunMetadata() output = sess.run(y, {x: dx, w: dw, b: db}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) # TODO(phawkins): really we would like to test that there were exactly # two kernel launches. However, we have no reliable way to determine # that. self.assert_(MetadataHasXlaOp(run_metadata)) expected = np.square(np.dot(dx, dw) + db) self.assertAllClose(expected, output, rtol=1e-1) class XlaCompilationTest(test.TestCase): """Tests for auto-compilation on CPU/GPU devices.""" def testReshape(self): """Tests an operator with compile-time constant and non-constant inputs.""" with self.test_session(config=NoRewriteSessionConfig()) as sess: x = array_ops.placeholder(dtypes.float32) y = array_ops.placeholder(dtypes.int32) with jit_scope(): # Reshape's first argument is non-constant in the JIT, but its second # (shape) argument will be treated as a compile-time constant for # each JIT compilation. # We do not use a tf.const() argument since we want to ensure the # shape is still a run-time argument to the JIT, and not # statically known as part of the JIT compilation's input graph. z = array_ops.reshape(x, y) run_metadata = config_pb2.RunMetadata() out = sess.run(z, {x: np.array([1, 2, 3, 4, 5, 6], np.float32), y: [-1, 3]}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) self.assert_(MetadataHasXlaOp(run_metadata)) self.assertAllClose(np.array([[1, 2, 3], [4, 5, 6]], np.float32), out) def testIgnoredArguments(self): """Tests that JIT computations can ignore formal parameters.""" with self.test_session(config=NoRewriteSessionConfig()) as sess: x = array_ops.placeholder(dtypes.int32) y = array_ops.placeholder(dtypes.int32) with jit_scope(): z = math_ops.add(x, x) w = math_ops.add(y, y) # Pulls 'w' into the same compilation via control dependencies. with ops.control_dependencies([w]): n = control_flow_ops.no_op() with ops.control_dependencies([n]): t = math_ops.add(z, z) run_metadata = config_pb2.RunMetadata() out = sess.run(t, {x: np.int32(7), y: np.int32(404)}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) self.assert_(MetadataHasXlaOp(run_metadata)) self.assertAllClose(28, out) def testLoops(self): """Tests that compilation accepts computations containing loops.""" with self.test_session(config=NoRewriteSessionConfig()) as session: x = array_ops.placeholder(dtypes.float32) with jit_scope(): c = lambda i, _: math_ops.less(i, 5) b = lambda i, x: (i + 1, x * 2.0 + 1.0) _, y = control_flow_ops.while_loop(c, b, (constant_op.constant(0), x)) run_metadata = config_pb2.RunMetadata() result = session.run(y, {x: np.float32(2)}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) self.assert_(MetadataHasXlaOp(run_metadata)) self.assertAllClose(result, np.float32(95), rtol=1e-1) def testCond(self): """Tests that compilation handles switch operators.""" with self.test_session(config=NoRewriteSessionConfig()) as session: x = array_ops.placeholder(dtypes.float32) y = array_ops.placeholder(dtypes.float32) c = array_ops.placeholder(dtypes.bool) with jit_scope(): z = x + 1.0 w = control_flow_ops.cond(c, lambda: z, lambda: y) t = math_ops.add(z, w) # If JIT compilation chooses to cluster z and t, then execution will # deadlock. run_metadata = config_pb2.RunMetadata() result = session.run(t, {x: np.float32(2), y: np.float32(4), c: True}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) self.assert_(MetadataHasXlaOp(run_metadata)) self.assertAllClose(result, np.float32(6), rtol=1e-1) def testNestedFunction(self): g = ops.Graph() with g.as_default(): @function.Defun(compiled=True) def Bar(x, y): return x + 2 * y @function.Defun(compiled=True) def Foo(x): return Bar(x * x, x * x * x) @function.Defun() def Entry(x): return Foo(x) inp = array_ops.placeholder(dtypes.float32) out = Entry(inp) with self.test_session( config=NoRewriteSessionConfig(), graph=g, use_gpu=True) as sess: run_metadata = config_pb2.RunMetadata() val = sess.run(out, feed_dict={inp: [2., 10.]}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) self.assertAllClose(val, [20., 2100.]) def testLoopDeadlock(self): """Regression test for bug that caused deadlocks in graphs with loops.""" with self.test_session(config=NoRewriteSessionConfig()) as session: x = array_ops.placeholder(dtypes.float32) with jit_scope(): y = x + 1.0 c = lambda i, _x, _y: math_ops.less(i, 5) b = lambda i, x, _y: (i + 1, x * 2.0 + 1.0, x - 3.0) _, _, w = control_flow_ops.while_loop(c, b, (constant_op.constant(0), y, x)) u = w + y result = session.run(u, {x: np.float32(2)}) self.assertAllClose(result, np.float32(63), rtol=1e-1) def testGradient(self): """Tests that the backprop function is properly compiled.""" def _Run(compiled): @function.Defun(compiled=compiled) def Forward(x): return math_ops.log(x) g = ops.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32) y = Forward(x) dx, = gradients_impl.gradients(y, [x], 1.0) cfg = NoRewriteSessionConfig() cfg.graph_options.optimizer_options.opt_level = ( config_pb2.OptimizerOptions.L1) cfg.graph_options.optimizer_options.do_function_inlining = True with session_lib.Session(graph=g, config=cfg) as sess: run_metadata = config_pb2.RunMetadata() dx_val = sess.run(dx, feed_dict={x: 100.}, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) self.assertAllClose(dx_val, 0.01) return RunMetadataLabels(run_metadata) # SymGrad[f=log(x)](x, dy) = 1/x * dy # # Note: we don't need to compute log(x) for dx due to graph pruning. # Do not compile the backprop. We should see one Reciprocal and one Mul. labels = _Run(compiled=False) self.assertFalse(InLabels(labels, "Log")) self.assertTrue(InLabels(labels, "Reciprocal")) self.assertTrue(InLabels(labels, "Mul")) self.assertFalse(InLabels(labels, "XlaCompile")) self.assertFalse(InLabels(labels, "XlaRun")) # Compile the backprop. One XlaCompile/XlaRun pair. labels = _Run(compiled=True) self.assertFalse(InLabels(labels, "Log")) self.assertFalse(InLabels(labels, "Reciprocal")) self.assertFalse(InLabels(labels, "Mul")) self.assertTrue(InLabels(labels, "XlaCompile")) self.assertTrue(InLabels(labels, "XlaRun")) class ElementWiseFusionTest(test.TestCase): # Runs a simple test with the input jit_level and fusion_only flag. def simpleTest(self, arg0, arg1, global_jit_level): config = config_pb2.ConfigProto() config.graph_options.optimizer_options.global_jit_level = global_jit_level with session_lib.Session(config=config) as sess: a1 = array_ops.placeholder(dtypes.float32, [2, 2], name="a1") a2 = array_ops.placeholder(dtypes.float32, [2, 2], name="a2") # Two element-wise ops. We need at least two ops since single # element clusters are not passed to XLA in fusion_only mode. a3 = a1 * a2 a4 = a3 + a1 # A matmul to break XLA clustering. a5 = math_ops.matmul(a4, a1) # Two more element-wise ops. a6 = a5 - a4 a7 = a6 + a2 run_metadata = config_pb2.RunMetadata() output = sess.run( a7, { a1: arg0, a2: arg1 }, run_metadata=run_metadata, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE)) labels = RunMetadataLabels(run_metadata) xla_compile_count = sum("XlaCompile(" in x for x in labels) xla_run_count = sum("XlaRun(" in x for x in labels) self.assertEqual(xla_compile_count, xla_run_count) return output, xla_run_count def testElementWiseClustering(self): arg0 = np.random.rand(2, 2).astype(np.float32) arg1 = np.random.rand(2, 2).astype(np.float32) os.environ["TF_XLA_FLAGS"] = ( "--tf_xla_fusion_only=true " "--tf_xla_cpu_global_jit " + os.environ.get("TF_XLA_FLAGS", "")) tf_op, tf_count = self.simpleTest(arg0, arg1, config_pb2.OptimizerOptions.OFF) self.assertEqual(0, tf_count) tfef_op, tfef_count = self.simpleTest(arg0, arg1, config_pb2.OptimizerOptions.ON_1) self.assertEqual(2, tfef_count) self.assertAllClose(tf_op, tfef_op, rtol=1e-1) if __name__ == "__main__": test.main()