/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/jit/partially_decluster_pass.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/const_analysis.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "tensorflow/core/framework/memory_types.h" #include "tensorflow/core/framework/node_def.pb.h" namespace tensorflow { namespace { Status FindNodesToDecluster(const Graph& graph, absl::flat_hash_set* result, absl::Span post_order) { // Find nodes that have at least one user outside their cluster that expects // hostmem output. These nodes should be cloned to outside the cluster to // avoid the device-host copy we'd otherwise need. MemoryTypeVector input_mtypes, output_mtypes; for (Node* n : post_order) { absl::optional from_cluster = GetXlaClusterForNode(*n); if (!from_cluster) { continue; } // We assume the only XLA-auto-clusterable operations with side effects are // resource variable updates. We can't execute these twice. if (HasResourceInputOrOutput(*n)) { continue; } DeviceType device_type(""); TF_RETURN_IF_ERROR( DeviceToDeviceType(n->assigned_device_name(), &device_type)); TF_RETURN_IF_ERROR(MemoryTypesForNode(graph.op_registry(), device_type, n->def(), &input_mtypes, &output_mtypes)); for (const Edge* e : n->out_edges()) { Node* dst = e->dst(); if (e->IsControlEdge()) { continue; } bool edge_incurs_extra_device_to_host_copy; if (output_mtypes[e->src_output()] == DEVICE_MEMORY) { // If the output of the *TensorFlow* operation is in DEVICE_MEMORY then // keep the node clustered -- XLA will also produce the output in device // memory and we will get some benefit from clustering. edge_incurs_extra_device_to_host_copy = false; } else { MemoryTypeVector dst_input_mtypes, dst_output_mtypes; DeviceType dst_device_type(""); TF_RETURN_IF_ERROR( DeviceToDeviceType(dst->assigned_device_name(), &dst_device_type)); TF_RETURN_IF_ERROR(MemoryTypesForNode(graph.op_registry(), device_type, dst->def(), &dst_input_mtypes, &dst_output_mtypes)); edge_incurs_extra_device_to_host_copy = dst_input_mtypes[e->dst_input()] == HOST_MEMORY; } if (!edge_incurs_extra_device_to_host_copy) { continue; } // Check if `dst` is in a different cluster, unclustered, or about to be // partially declustered (here we rely on the post-order traversal order). // If yes, decluster `n` to avoid the device-to-host memcpy. absl::optional dst_cluster = result->count(dst) ? absl::nullopt : GetXlaClusterForNode(*dst); if (from_cluster != dst_cluster) { CHECK(result->insert(n).second); break; } } } return Status::OK(); } Status PartiallyDeclusterNode(Graph* graph, Node* n) { absl::string_view cluster_name = *GetXlaClusterForNode(*n); absl::InlinedVector out_edges_to_clone; for (const Edge* out_edge : n->out_edges()) { if (out_edge->IsControlEdge()) { continue; } Node* dst = out_edge->dst(); absl::optional dst_cluster_name = GetXlaClusterForNode(*dst); if (dst_cluster_name != cluster_name) { out_edges_to_clone.push_back(out_edge); } } CHECK(!out_edges_to_clone.empty()) << n->DebugString(); NodeDef ndef = n->def(); ndef.set_name(absl::StrCat(n->name(), "/declustered")); RemoveFromXlaCluster(&ndef); Status s; Node* cloned_node = graph->AddNode(ndef, &s); cloned_node->set_assigned_device_name(n->assigned_device_name()); TF_RETURN_IF_ERROR(s); for (const Edge* in_edge : n->in_edges()) { graph->AddEdge(in_edge->src(), in_edge->src_output(), cloned_node, in_edge->dst_input()); } for (const Edge* out_edge_to_clone : out_edges_to_clone) { graph->AddEdge(cloned_node, out_edge_to_clone->src_output(), out_edge_to_clone->dst(), out_edge_to_clone->dst_input()); graph->RemoveEdge(out_edge_to_clone); } return Status::OK(); } bool NotBackedge(const Edge& edge) { return !edge.src()->IsNextIteration(); } // Clones nodes to outside their cluster to avoid device-to-host copies. For // instance, converts this: // // ..... // | // v // A_Clustered ====> C_Unclustered // | // v // B_Clustered // // to: // // ..... // | | // | +-------------+ // | | // v v // A_Clustered A_Unclustered ====> C_Unclustered // | // v // B_Clustered // // where the ===> arrow has a hostmem source and destination and would entail a // device to host copy if the source and destination were not in the same XLA // cluster. Status PartiallyDeclusterToRemoveDeviceToHostCopies(Graph* graph) { // When deciding whether to decluster a particular node, we base our decision // on if we've decided that some of its consumers have to be declustered too. // Iterating the graph in post-order guarantees that consumers have been // visited before producers. std::vector post_order; GetPostOrder(*graph, &post_order, /*stable_comparator=*/NodeComparatorName(), /*edge_filter=*/NotBackedge); absl::flat_hash_set nodes_to_partially_decluster; TF_RETURN_IF_ERROR( FindNodesToDecluster(*graph, &nodes_to_partially_decluster, post_order)); if (VLOG_IS_ON(3)) { for (Node* n : post_order) { if (nodes_to_partially_decluster.count(n)) { VLOG(3) << n->DebugString(); } } } for (Node* n : post_order) { if (nodes_to_partially_decluster.count(n)) { TF_RETURN_IF_ERROR(PartiallyDeclusterNode(graph, n)); } } nodes_to_partially_decluster.clear(); TF_RETURN_IF_ERROR( FindNodesToDecluster(*graph, &nodes_to_partially_decluster, post_order)); CHECK(nodes_to_partially_decluster.empty()); return Status::OK(); } bool IsIntraClusterEdge(const Edge& edge) { absl::optional src_cluster_name = GetXlaClusterForNode(*edge.src()); absl::optional dst_cluster_name = GetXlaClusterForNode(*edge.dst()); return src_cluster_name.has_value() && src_cluster_name == dst_cluster_name; } Status MustCompileNode(const Node* n, bool* result) { DeviceType device_type(""); TF_RETURN_IF_ERROR( DeviceToDeviceType(n->assigned_device_name(), &device_type)); const XlaOpRegistry::DeviceRegistration* registration; if (!XlaOpRegistry::GetCompilationDevice(device_type.type(), ®istration)) { *result = false; } else { *result = registration->requires_compilation; } return Status::OK(); } // Declusters nodes to reduce the number of times we think we need to recompile // a TensorFlow graph. // // Abstractly, if we have a cluster of this form: // // x0 = arg0 // x1 = arg1 // ... // shape = f(x0, x1, ...) // result = Reshape(input=, new_shape=shape) // // then pulling `f` out of the cluster may reduce the number of compilations and // will never increase the number of compilations. // // We may reduce the number of compilations if f is many to one. For instance // if f(x,y) = x-y then x=3,y=1 and x=4,y=2 will generate two different // compilations if f is in the cluster but only one compilation if f is outside // the cluster. // // Declustering f will increase the number of compilations only if f is a // one-to-many "function" i.e. isn't a function at all. RNG is one possible // example, depending on how we look at it. But we never create clusters where // such f's would be marked as must-be-constant. // // We assume here that the extra repeated (repeated compared to a clustered f // where it will always be constant folded) host-side computation of f does not // regress performance in any significant manner. We will have to revisit this // algorith with a more complex cost model if this assumption turns out to be // incorrect. Status DeclusterNodesToReduceRecompilations(Graph* graph) { std::vector compile_time_const_nodes(graph->num_node_ids()); TF_RETURN_IF_ERROR(BackwardsConstAnalysis( *graph, nullptr, &compile_time_const_nodes, IsIntraClusterEdge)); std::vector rpo; GetReversePostOrder(*graph, &rpo, /*stable_comparator=*/NodeComparatorName(), /*edge_filter=*/NotBackedge); for (Node* n : rpo) { if (!compile_time_const_nodes[n->id()]) { continue; } absl::string_view cluster_name = *GetXlaClusterForNode(*n); bool node_on_cluster_edge = absl::c_all_of(n->in_edges(), [&](const Edge* e) { absl::optional incoming_cluster = GetXlaClusterForNode(*e->src()); return !incoming_cluster || *incoming_cluster != cluster_name; }); // We don't want to decluster F in a graph like // // Input -> OP -> Shape -> F -> Reshape // // Doing so will break up the cluster. Even if we were okay with breaking // up the cluster we will at least have to relabel the two clusters to have // different cluster names. // // We may want to revisit this in the future: we may have cases where OP is // a small computation that does not benefit from XLA while XLA can optimize // everything that follows the Reshape. In these cases it may be wise to // remove Input, OP, Shape and F from the cluster, if F is a many-to-one // function. // // Note that we do do the right thing for graphs like: // // Input -> F0 -> F1 -> Reshape // // Since we iterate in RPO, we'll first encounter F0, decluster it, then // encounter F1, decluster it and so on. if (node_on_cluster_edge) { bool must_compile_node; TF_RETURN_IF_ERROR(MustCompileNode(n, &must_compile_node)); if (!must_compile_node) { VLOG(3) << "Declustering must-be-constant node " << n->name(); RemoveFromXlaCluster(n); } } } return Status::OK(); } } // namespace Status PartiallyDeclusterPass::Run( const GraphOptimizationPassOptions& options) { // NB! In this pass we assume the only XLA-auto-clusterable operations that // may have side effects are resource variable operations so we don't cluster // those. The pass will have to be updated if this assumption becomes // invalid. Graph* graph = options.graph->get(); TF_RETURN_IF_ERROR(PartiallyDeclusterToRemoveDeviceToHostCopies(graph)); TF_RETURN_IF_ERROR(DeclusterNodesToReduceRecompilations(graph)); return Status::OK(); } } // namespace tensorflow