/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/jit/mark_for_compilation_pass.h" #include #include #include #include #include #include "tensorflow/compiler/jit/deadness_analysis.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/graphcycles/graphcycles.h" #include "tensorflow/compiler/jit/legacy_flags/mark_for_compilation_pass_flags.h" #include "tensorflow/compiler/jit/union_find.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/dump_graph.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "tensorflow/compiler/xla/util.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/memory_types.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/kernels/bounds_check.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { bool HasXLAKernel(const Node& node, const DeviceType& jit_device_type) { // There is a SymbolicGradient kernel on the XLA_JIT device, but the gradient // is really a kind of function call and will be handled by // IsCompilableCall(). if (node.type_string() == "SymbolicGradient") return false; if (node.type_string() == "Const") { // Skip Const op with type DT_STRING, since XLA doesn't support it, but the // registered Const KernelDef says that it does, to support no-op Assert for // tfcompile. const AttrValue* attr = node.attrs().Find("dtype"); if (attr != nullptr && attr->type() == DT_STRING) { return false; } } // XLA does not offer guaranteed aliasing between the input and output of the // XLA cluster so it can't implement the forward-tensor-ref semantic. Leave // such nodes out of XLA clusters. if (HasForwardedRefInput(node)) { VLOG(2) << "Rejecting " << node.name() << ": Identity with unsafe cast."; return false; } return FindKernelDef(jit_device_type, node.def(), nullptr, nullptr).ok(); } // Make sure we don't recurse infinitely on recursive functions. const int kMaxRecursionDepth = 10; bool IsCompilableCall(const NodeDef& call_def, const DeviceType& jit_device_type, int depth, FunctionLibraryRuntime* lib_runtime); // Tests whether 'while_node' is a completely compilable loop. // Every operator in the condition and body functions must be compilable for a // while loop to be compilable. bool IsCompilableWhile(const Node& while_node, const DeviceType& jit_device_type, int depth, FunctionLibraryRuntime* lib_runtime) { const NameAttrList* name_attr; NodeDef call; Status status; status = GetNodeAttr(while_node.attrs(), "cond", &name_attr); if (!status.ok()) { VLOG(2) << "Rejecting While " << while_node.name() << ": missing 'cond' attribute on While node."; return false; } const string cond_func = name_attr->name(); call.set_name("while_cond"); call.set_op(cond_func); *call.mutable_attr() = name_attr->attr(); if (!IsCompilableCall(call, jit_device_type, depth + 1, lib_runtime)) { VLOG(2) << "Rejecting While " << while_node.name() << ": can't compile loop condition: " << cond_func; return false; } status = GetNodeAttr(while_node.attrs(), "body", &name_attr); if (!status.ok()) { VLOG(2) << "Rejecting While " << while_node.name() << ": missing 'body' attribute on While node."; return false; } const string body_func = name_attr->name(); call.set_name("while_body"); call.set_op(body_func); *call.mutable_attr() = name_attr->attr(); if (!IsCompilableCall(call, jit_device_type, depth + 1, lib_runtime)) { VLOG(2) << "Rejecting While " << while_node.name() << ": can't compile loop body: " << body_func; return false; } return true; } // Tests whether 'call_def' is a call to a completely compilable function. // Every operator in the function must be compilable for a function to be // compilable. bool IsCompilableCall(const NodeDef& call_def, const DeviceType& jit_device_type, int depth, FunctionLibraryRuntime* lib_runtime) { if (depth > kMaxRecursionDepth) { VLOG(2) << "Rejecting " << call_def.op() << ": function depth limit exceeded."; return false; } FunctionLibraryRuntime::Handle handle; Status status = lib_runtime->Instantiate(call_def.op(), AttrSlice(call_def), &handle); if (!status.ok()) { VLOG(2) << "Rejecting " << call_def.op() << ": could not instantiate: " << status; return false; } const FunctionBody* fbody = lib_runtime->GetFunctionBody(handle); CHECK(fbody); const FunctionDef& fdef = fbody->fdef; bool noinline = false; if (GetNodeAttr(AttrSlice(&fdef.attr()), "_noinline", &noinline).ok() && noinline) { // The underlying mechanism that calls non-inlined functions uses // LocalExecutor, which interacts poorly with the LocalExecutor used by // tf2xla to translate the TF graph into XLA. So we avoid this for now. // // TODO(b/36139787): Create a mechanism to set inlining hints. VLOG(2) << "Rejecting " << call_def.op() << ": can't compile noinline function."; return false; } for (Node* node : fbody->graph->op_nodes()) { if (node->type_string() == "_Arg" || node->type_string() == "_Retval") continue; if (node->type_string() == "While") { // Handle functional While loop (not in open source build). return IsCompilableWhile(*node, jit_device_type, depth + 1, lib_runtime); } if (!HasXLAKernel(*node, jit_device_type) && !IsCompilableCall(node->def(), jit_device_type, depth + 1, lib_runtime)) { VLOG(2) << "Rejecting " << call_def.op() << ": unsupported op " << node->name() << ": " << node->def().ShortDebugString(); return false; } } return true; } // Returns true if the op can be decomposed into XLA ops for which // there are fusable elemental implementations. // // TODO(hpucha): Remove this code since this functionality is subsumed by // Grappler XlaFusionOptimizer. bool IsXlaFusable(const NodeDef& node) { static const std::unordered_set* elementwise_ops = new std::unordered_set( {// tf2xla/kernels/aggregate_ops.cc "AddN", // tf2xla/kernels/batchtospace_op.cc "BatchToSpace", "BatchToSpaceND", // tf2xla/kernels/bcast_ops.cc "BroadcastArgs", "BroadcastGradientArgs", // tf2xla/kernels/bias_ops.cc "BiasAdd", "BiasAddV1", "BiasAddGrad" /*(Reduce)*/, // tf2xla/kernels/binary_ops.cc "Add", "Sub", "Mul", "Div", "Atan2", "Complex", "FloorDiv", "FloorMod", "BitwiseAnd", "BitwiseOr", "LeftShift", "RightShift", "LogicalAnd", "LogicalOr", "Mod", "Maximum", "Minimum", "RealDiv", "ReciprocalGrad", "RsqrtGrad", "SqrtGrad", "SquaredDifference", "TruncateDiv", "TruncateMod", "Equal", "NotEqual", "Greater", "GreaterEqual", "Less", "LessEqual", "SigmoidGrad", "SoftplusGrad", "SoftsignGrad", "TanhGrad", "Pow", "ApproximateEqual", // tf2xla/kernels/cast_op.cc "Cast", // tf2xla/kernels/categorical_op.cc "Multinomial" /* (Rng ops are disabled on GPU backend currently)*/, // tf2xla/kernels/concat_op.cc "Concat", "ConcatV2", "ConcatOffset", // tf2xla/kernels/const_op.cc "Const", // tf2xla/kernels/cross_op.cc "Cross", // tf2xla/kernels/depthtospace_op.cc "DepthToSpace", // tf2xla/kernels/diag_op.cc "Diag", "DiagPart", "MatrixDiag", "MatrixDiagPart", // tf2xla/kernels/dynamic_stitch_op.cc "DynamicStitch", "ParallelDynamicStitch", // tf2xla/kernels/elu_op.cc "Elu", "EluGrad", "Selu", "SeluGrad", // tf2xla/kernels/fake_quantize_ops.cc "FakeQuantWithMinMaxArgs", "FakeQuantWithMinMaxArgsGradient", "FakeQuantWithMinMaxVars", "FakeQuantWithMinMaxVarsGradient" /*(Reduce)*/, // tf2xla/kernels/fill_op.cc "Fill", // tf2xla/kernels/gather_op.cc "Gather", "GatherV2", "GatherNd", // tf2xla/kernels/identity_op.cc "Identity", "IdentityN", "PreventGradient", "StopGradient", "Snapshot", // tf2xla/kernels/image_ops.cc "RGBToHSV", "HSVToRGB", "AdjustContrastv2" /*(Reduce)*/, "AdjustSaturation", "AdjustHue", // tf2xla/kernels/index_ops.cc "ArgMax", "ArgMin", // tf2xla/kernels/l2loss_op.cc "L2Loss" /*(Reduce)*/, // tf2xla/kernels/lrn_ops.cc (ReduceWindow) "LRN", "LRNGrad", // tf2xla/kernels/matrix_band_part_op.cc "MatrixBandPart", // tf2xla/kernels/matrix_set_diag_op.cc "MatrixSetDiag", // tf2xla/kernels/mirror_pad_op.cc "MirrorPad", // tf2xla/kernels/no_op.cc "NoOp", "ControlTrigger", // tf2xla/kernels/one_hot_op.cc "OneHot", // tf2xla/kernels/pack_op.cc "Pack", // tf2xla/kernels/pad_op.cc "Pad", "PadV2", // tf2xla/kernels/pooling_ops.cc "MaxPool", "MaxPoolV2", "MaxPool3D", "AvgPool", "AvgPool3D", /*(all the pooling ops use ReduceWindow)*/ "MaxPoolGrad", "MaxPoolGradV2", "MaxPool3DGrad", "AvgPoolGrad", "AvgPool3DGrad", // tf2xla/kernels/quantize_and_dequantize_op.cc (Reduce) "QuantizeAndDequantizeV2", // tf2xla/kernels/random_ops.cc (Rng ops are disabled on GPU backend // currently) "RandomUniform", "RandomUniformInt", "RandomStandardNormal", "TruncatedNormal", // tf2xla/kernels/reduction_ops.cc (Reduce) "Sum", "Prod", "Min", "Max", "Mean", "All", "Any", // tf2xla/kernels/relu_op.cc "Relu", "Relu6", "ReluGrad", "Relu6Grad", // tf2xla/kernels/reshape_op.cc "Reshape", // tf2xla/kernels/reverse_op.cc "Reverse", "ReverseV2", // tf2xla/kernels/reverse_sequence_op.cc "ReverseSequence", // tf2xla/kernels/scan_ops.cc (ReduceWindow) "Cumsum", "Cumprod", // tf2xla/kernels/scatter_nd_op.cc (Reduce) "ScatterNd", // tf2xla/kernels/segment_reduction_ops.cc (Reduce) "UnsortedSegmentSum", // tf2xla/kernels/select_op.cc "Select", // tf2xla/kernels/sequence_ops.cc "Range", "LinSpace", // tf2xla/kernels/shape_op.cc "Shape", "ShapeN", "Rank", "Size", "ExpandDims", "Squeeze", "ZerosLike", "OnesLike", // tf2xla/kernels/slice_op.cc "Slice", // tf2xla/kernels/softmax_op.cc (Reduce) "Softmax", "LogSoftmax", "SoftmaxCrossEntropyWithLogits", "SparseSoftmaxCrossEntropyWithLogits", // tf2xla/kernels/spacetobatch_op.cc "SpaceToBatchND", "SpaceToBatch", // tf2xla/kernels/spacetodepth_op.cc "SpaceToDepth", // tf2xla/kernels/split_op.cc "Split", "SplitV", // tf2xla/kernels/stack_ops.cc "StackV2", "StackPushV2", "StackPopV2", "StackCloseV2", // tf2xla/kernels/stateless_random_ops.cc (Rng ops are disabled on // GPU // backend currently) "StatelessRandomUniform", "StatelessRandomNormal" // tf2xla/kernels/strided_slice_op.cc "StridedSlice", "StridedSliceGrad", "ResourceStridedSliceAssign", // tf2xla/kernels/tile_ops.cc "Tile", // tf2xla/kernels/training_ops.cc "ResourceApplyGradientDescent", "ResourceApplyMomentum", "ResourceApplyAdagrad", "ResourceApplyAdam", "ResourceApplyRMSProp", "ResourceApplyFtrl", "ResourceApplyFtrlV2", // tf2xla/kernels/transpose_op.cc "Transpose", "InvertPermutation", // tf2xla/kernels/unary_ops.cc "ComplexAbs", "Angle", "Conj", "Abs", "Acos", "Acosh", "Asin", "Asinh", "Atan", "Atanh", "Ceil", "Cos", "Cosh", "Sin", "Exp", "Expm1", "Floor", "IsFinite", "IsInf", "IsNan", "Inv", "Reciprocal", "Log", "Log1p", "Invert", "LogicalNot", "Neg", "Rint", "Round", "Rsqrt", "Sigmoid", "Sign", "Sinh", "Softplus", "Softsign", "Sqrt", "Square", "Tan", "Tanh", "Real", "Imag", // tf2xla/kernels/unpack_op.cc "Unpack"}); return elementwise_ops->count(node.op()) > 0; } Status FindCompilationCandidates( const Graph& graph, FunctionLibraryDefinition* flib_def, Env* env, const std::function& is_compilable_fn, OrderedNodeSet* candidates) { OptimizerOptions opts; std::unique_ptr pflr( new ProcessFunctionLibraryRuntime(nullptr, env, TF_GRAPH_DEF_VERSION, flib_def, opts)); FunctionLibraryRuntime* lib_runtime = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); int64& fuel = legacy_flags::GetMarkForCompilationPassFlags()->tf_xla_clustering_fuel; // Iterate over nodes in sorted order so that compiler fuel is deterministic. // We can't simply pass op_nodes().begin() and op_nodes().end to the // std::vector constructor because they're not proper iterators, with // iterator_traits defined and so on. std::vector sorted_nodes; for (Node* node : graph.op_nodes()) { sorted_nodes.push_back(node); } std::sort(sorted_nodes.begin(), sorted_nodes.end(), NodeComparatorID()); if (fuel >= std::numeric_limits::max() / 2) { // The assumption is that if fuel started out as INT64_MAX, it will forever // stay greater than INT64_MAX / 2. VLOG(2) << "Starting fuel: infinity"; } else { VLOG(2) << "Starting fuel: " << fuel; } for (Node* node : sorted_nodes) { if (fuel <= 0) { VLOG(1) << "Hit fuel limit; not marking any remaining ops as clusterable."; break; } DeviceType device_type(""); TF_RETURN_IF_ERROR( DeviceToDeviceType(node->assigned_device_name(), &device_type)); if (is_compilable_fn && !is_compilable_fn(node, device_type)) { // is_compilable_fn has already logged the reason if it returned false. continue; } const XlaOpRegistry::DeviceRegistration* registration; CHECK( XlaOpRegistry::GetCompilationDevice(device_type.type(), ®istration)); DeviceType jit_device_type(registration->compilation_device_name); if (!HasXLAKernel(*node, jit_device_type) && !IsCompilableCall(node->def(), jit_device_type, 0, lib_runtime)) { VLOG(2) << "Rejecting " << node->name() << ": unsupported op " << node->type_string(); continue; } if (!registration->compile_resource_ops && HasResourceInputOrOutput(*node)) { VLOG(2) << "Rejecting: " << node->name() << ": resource input/output " << node->type_string(); continue; } if (node->type_string() == "While" && !IsCompilableWhile(*node, jit_device_type, 0, lib_runtime)) { continue; } // _Arg nodes in a top-level function represent feeds. // Do not compile them. if (node->type_string() == "_Arg") { continue; } // _Retval nodes in a top-level function represent fetches. // Do not compile them. if (node->type_string() == "_Retval") { continue; } candidates->insert(node); --fuel; } VLOG(2) << "candidates->size() = " << candidates->size(); return Status::OK(); } struct Cluster { // Identifies the node that represents this cluster in the cycle detection // graph. int representative = -1; }; } // anonymous namespace bool IsCompilable(FunctionLibraryRuntime* flr, const NodeDef& ndef) { Device* device = flr->device(); const XlaOpRegistry::DeviceRegistration* registration; CHECK(XlaOpRegistry::GetCompilationDevice(device->device_type(), ®istration)); DeviceType jit_device_type(registration->compilation_device_name); return IsCompilableCall(ndef, jit_device_type, 0, flr); } Status MarkForCompilationPass::Run( const GraphOptimizationPassOptions& options) { // TODO(phawkins): precompute the "GetCompilationDevice" properties of each // device ahead of time. OptimizerOptions::GlobalJitLevel global_jit_level = options.session_options->config.graph_options() .optimizer_options() .global_jit_level(); if (global_jit_level == OptimizerOptions::DEFAULT) { // To set compilation to be on by default, change the following line. global_jit_level = OptimizerOptions::OFF; } legacy_flags::MarkForCompilationPassFlags* flags = legacy_flags::GetMarkForCompilationPassFlags(); if (flags->tf_xla_auto_jit == -1 || (1 <= flags->tf_xla_auto_jit && flags->tf_xla_auto_jit <= 2)) { // If the flag tf_xla_auto_jit is a valid, non-zero setting, it overrides // the setting in ConfigProto. global_jit_level = static_cast(flags->tf_xla_auto_jit); } bool cpu_global_jit = flags->tf_xla_cpu_global_jit; bool fusion_only = flags->tf_xla_fusion_only; VLOG(1) << "flags->tf_xla_cpu_global_jit = " << flags->tf_xla_cpu_global_jit; VLOG(1) << "flags->tf_xla_fusion_only = " << flags->tf_xla_fusion_only; VLOG(1) << "flags->tf_xla_auto_jit = " << flags->tf_xla_auto_jit; const FunctionLibraryDefinition* fld = options.flib_def; std::unique_ptr deadness; { XLA_SCOPED_LOGGING_TIMER_LEVEL("DeadnessAnalysis", 1); TF_RETURN_IF_ERROR(DeadnessAnalysis::Run(**options.graph, &deadness)); } auto is_compilable = [&](const Node* node, const DeviceType& device_type) { const XlaOpRegistry::DeviceRegistration* registration; if (!XlaOpRegistry::GetCompilationDevice(device_type.type(), ®istration)) { VLOG(2) << "Rejecting " << node->name() << ": could not find JIT device."; return false; } // If this device requires a JIT, we must say yes. if (registration->requires_compilation) return true; // If there is a _XlaCompile annotation, use its value. bool compile = false; Status status = GetNodeAttr(node->attrs(), kXlaCompileAttr, &compile); if (status.ok()) { if (!compile) { VLOG(2) << "Rejecting " << node->name() << ": kXlaCompileAttr(" << kXlaCompileAttr << ") is false."; } return compile; } status = fld->GetAttr(*node, kXlaCompileAttr, &compile); if (status.ok()) { if (!compile) { VLOG(2) << "Rejecting " << node->name() << ": kXlaCompileAttr(" << kXlaCompileAttr << ") on callee is false."; } return compile; } // If inputs to `node` can have conflicting deadness (i.e. some are alive // and some are dead) then don't compile it. XLA cannot represent the // deadness semantics of these nodes correctly and auto-clustering these // nodes can cause deadness to propagate to nodes that should be live. if (node->IsMerge() || deadness->HasInputsWithMismatchingDeadness(*node)) { VLOG(2) << "Rejecting " << node->name() << ": mismatching deadness."; return false; } // Check for fusable ops only if requested. if (global_jit_level > 0 && fusion_only && !IsXlaFusable(node->def())) { VLOG(2) << "Rejecting " << node->name() << ": not fusable op but fusion_only enabled."; return false; } // Otherwise use the value of global_jit_level. // Ignore enable_jit_by_default if global jit compilation for CPU // is explicitly requested via tf_xla_cpu_global_jit flag bool ignore_registration = cpu_global_jit && device_type == DEVICE_CPU; bool should_compile = (ignore_registration || registration->enable_jit_by_default) && global_jit_level > 0; if (!should_compile) { if (global_jit_level <= 0) { VLOG(2) << "Rejecting " << node->name() << ": global jit disabled."; } else { VLOG(2) << "Rejecting " << node->name() << ": JIT for device disabled."; } } return should_compile; }; return RunImpl(options, is_compilable); } // Is 'node' an operator that consumes only the shape of its input, not the // data itself? static bool IsShapeConsumerOp(const Node& node) { return node.type_string() == "Shape" || node.type_string() == "Rank" || node.type_string() == "Size"; } // Sequence number generator to ensure clusters have unique names. static std::atomic cluster_sequence_num; Status MarkForCompilationPass::RunImpl( const GraphOptimizationPassOptions& options, const std::function& is_compilable_fn) { VLOG(1) << "MarkForCompilationPass::Run"; // Make sure that kernels have been registered on the JIT device. XlaOpRegistry::RegisterCompilationKernels(); Graph* graph = options.graph->get(); OrderedNodeSet compilation_candidates; TF_RETURN_IF_ERROR(FindCompilationCandidates( *graph, options.flib_def, (options.session_options != nullptr) ? options.session_options->env : Env::Default(), is_compilable_fn, &compilation_candidates)); if (compilation_candidates.empty()) { VLOG(2) << "No compilable candidates"; return Status::OK(); } GraphCycles cycles; TF_RETURN_IF_ERROR(CreateCycleDetectionGraph(graph, &cycles)); // Each compilation candidate belongs to a cluster. The cluster's // representative // names the node in the 'cycles' graph that represents the cluster. std::vector> clusters(graph->num_node_ids()); std::deque*> worklist; for (Node* node : compilation_candidates) { Cluster& cluster = clusters[node->id()].Get(); cluster.representative = node->id(); worklist.push_back(&clusters[node->id()]); } legacy_flags::MarkForCompilationPassFlags* flags = legacy_flags::GetMarkForCompilationPassFlags(); // Repeatedly contract edges between clusters that are on the same device, // provided the contraction would not create a cycle. // // TODO(hpucha): Handle the case where kXlaClusterAttr is already set (for // example, from the Grappler fusion pass). while (!worklist.empty()) { int from = worklist.front()->Get().representative; worklist.pop_front(); Node* node_from = graph->FindNodeId(from); if (node_from->IsControlFlow()) { // Control flow nodes aren't compilation candidates and should never // appear. return errors::Internal( "Found control flow node in clustering worklist: ", node_from->type_string()); } string from_scope; string to_scope; for (int to : cycles.Successors(from)) { if (to >= graph->num_node_ids()) { // Node is a "frame" node that is present only in the cycle detection // graph. No clustering is possible. continue; } Node* node_to = graph->FindNodeId(to); if (compilation_candidates.find(node_to) == compilation_candidates.cend()) { continue; } if (node_from->assigned_device_name() != node_to->assigned_device_name()) { continue; } // Look for an _XlaScope on both nodes. If both nodes have a // scope and the scopes do not match, do not cluster along this // edge. If even one of the nodes lacks an _XlaScope attribute, // then it is treated as a "bridge" and a cluster may be created // along it. We may want to restrict this behavior to require // all nodes marked with _XlaCompile=true to also have a // _XlaScope property set (and raise an error otherwise); but // for now we don't do this. if (GetNodeAttr(node_from->attrs(), kXlaScopeAttr, &from_scope).ok() && GetNodeAttr(node_to->attrs(), kXlaScopeAttr, &to_scope).ok() && from_scope != to_scope) { continue; } // Ops that consume shapes cannot be the root of a cluster. This is an // optimization. if (clusters[from].Size() == 1 && IsShapeConsumerOp(*node_from)) { continue; } // Don't exceed the maximum cluster size. if (clusters[from].Size() + clusters[to].Size() > flags->tf_xla_max_cluster_size) { continue; } // If contracting the edge would create a cycle, bail out. // However, just because we can't merge the clusters now does not mean // we won't be able to merge them in the future. // e.g., if we have edges 1->2, 2->3 and 1->3, we cannot contract edge // 1->3. But if we first contract 1->2 then we can later contract 1->3. if (!cycles.ContractEdge(from, to)) continue; // Merge the clusters. ContractEdge uses 'from' as the number of the // merged node, so make sure 'from' is the chosen representative. clusters[from].Merge(&clusters[to]); worklist.push_back(&clusters[from]); break; } } // Count the number of non-trivial elements in each cluster. std::vector effective_cluster_sizes(graph->num_node_ids()); for (const Node* n : compilation_candidates) { int cluster = clusters[n->id()].Get().representative; // Identity nodes will be removed if the node gets marked for compilation. // Therefore we don't want to count them towards the effective cluster size. if (n->def().op() != "Identity") { effective_cluster_sizes[cluster]++; } } // Names for each cluster. std::unordered_map cluster_names; // Mark clusters for compilation that: // * are placed on a device that requires compilation (an XlaDevice), // * are explicitly marked for compilation (_XlaCompile=true), or // * have more than flags->tf_xla_min_cluster_size elements (applicable only // if compilation is enabled, otherwise there will be no such candidates). const int min_cluster_size = flags->tf_xla_min_cluster_size; for (Node* n : compilation_candidates) { int cluster = clusters[n->id()].Get().representative; // Compile if the user marked this node _XlaCompile=true bool compile_attr = false; bool marked_for_compilation = false; if (GetNodeAttr(n->attrs(), kXlaCompileAttr, &compile_attr).ok()) { marked_for_compilation = compile_attr; } else if (options.flib_def->GetAttr(*n, kXlaCompileAttr, &compile_attr) .ok()) { marked_for_compilation = compile_attr; } // Compile if this operator is placed on a device that requires // compilation. DeviceType device_type(""); TF_RETURN_IF_ERROR( DeviceToDeviceType(n->assigned_device_name(), &device_type)); const XlaOpRegistry::DeviceRegistration* registration; XlaOpRegistry::GetCompilationDevice(device_type.type(), ®istration); // Compile if this is a cluster of >= min_cluster_size compilable operators. // Also, always compile if the operator is placed on a device that requires // compilation, or if it contains at least one op that is marked for // compilation that is not an Identity op. if (effective_cluster_sizes[cluster] >= min_cluster_size || (effective_cluster_sizes[cluster] > 0 && marked_for_compilation) || registration->requires_compilation) { string& name = cluster_names[cluster]; if (name.empty()) { name = strings::StrCat("cluster_", cluster_sequence_num++); } n->AddAttr(kXlaClusterAttr, name); VLOG(3) << "Assigning node " << n->name() << " to cluster " << name; } } if (flags->tf_xla_clustering_debug) { dump_graph::DumpGraphToFile("mark_for_compilation", **options.graph, options.flib_def); } return Status::OK(); } } // namespace tensorflow