aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/QR
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/QR')
-rw-r--r--third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h582
-rw-r--r--third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR_MKL.h99
-rw-r--r--third_party/eigen3/Eigen/src/QR/FullPivHouseholderQR.h616
-rw-r--r--third_party/eigen3/Eigen/src/QR/HouseholderQR.h382
-rw-r--r--third_party/eigen3/Eigen/src/QR/HouseholderQR_MKL.h71
5 files changed, 0 insertions, 1750 deletions
diff --git a/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h b/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h
deleted file mode 100644
index 4824880f51..0000000000
--- a/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h
+++ /dev/null
@@ -1,582 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- * \class ColPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
- * upper triangular matrix.
- *
- * This decomposition performs column pivoting in order to be rank-revealing and improve
- * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
- *
- * \sa MatrixBase::colPivHouseholderQr()
- */
-template<typename _MatrixType> class ColPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- private:
-
- typedef typename PermutationType::Index PermIndexType;
-
- public:
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
- */
- ColPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_colsPermutation(),
- m_colsTranspositions(),
- m_temp(),
- m_colSqNorms(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ColPivHouseholderQR()
- */
- ColPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_colsPermutation(PermIndexType(cols)),
- m_colsTranspositions(cols),
- m_temp(cols),
- m_colSqNorms(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- ColPivHouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colSqNorms(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include ColPivHouseholderQR_solve.cpp
- * Output: \verbinclude ColPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- HouseholderSequenceType householderQ(void) const;
- HouseholderSequenceType matrixQ(void) const
- {
- return householderQ();
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- /** \returns a reference to the matrix where the result Householder QR is stored
- * \warning The strict lower part of this matrix contains internal values.
- * Only the upper triangular part should be referenced. To get it, use
- * \code matrixR().template triangularView<Upper>() \endcode
- * For rank-deficient matrices, use
- * \code
- * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
- * \endcode
- */
- const MatrixType& matrixR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- ColPivHouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_colsPermutation;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */
- inline const
- internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- ColPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of R.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \brief Reports whether the QR factorization was succesful.
- *
- * \note This function always returns \c Success. It is provided for compatibility
- * with other factorization routines.
- * \returns \c Success
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return Success;
- }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- PermutationType m_colsPermutation;
- IntRowVectorType m_colsTranspositions;
- RowVectorType m_temp;
- RealRowVectorType m_colSqNorms;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- using std::abs;
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = matrix.diagonalSize();
-
- // the column permutation is stored as int indices, so just to be sure:
- eigen_assert(cols<=NumTraits<int>::highest());
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_colsTranspositions.resize(matrix.cols());
- Index number_of_transpositions = 0;
-
- m_colSqNorms.resize(cols);
- for(Index k = 0; k < cols; ++k)
- m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
-
- RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // first, we look up in our table m_colSqNorms which column has the biggest squared norm
- Index biggest_col_index;
- RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
- biggest_col_index += k;
-
- // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
- // the actual squared norm of the selected column.
- // Note that not doing so does result in solve() sometimes returning inf/nan values
- // when running the unit test with 1000 repetitions.
- biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
-
- // we store that back into our table: it can't hurt to correct our table.
- m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
-
- // if the current biggest column is smaller than epsilon times the initial biggest column,
- // terminate to avoid generating nan/inf values.
- // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so)
- // repetitions of the unit test, with the result of solve() filled with large values of the order
- // of 1/(size*epsilon).
- if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
- {
- m_nonzero_pivots = k;
- m_hCoeffs.tail(size-k).setZero();
- m_qr.bottomRightCorner(rows-k,cols-k)
- .template triangularView<StrictlyLower>()
- .setZero();
- break;
- }
-
- // apply the transposition to the columns
- m_colsTranspositions.coeffRef(k) = biggest_col_index;
- if(k != biggest_col_index) {
- m_qr.col(k).swap(m_qr.col(biggest_col_index));
- std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
- ++number_of_transpositions;
- }
-
- // generate the householder vector, store it below the diagonal
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
-
- // apply the householder transformation to the diagonal coefficient
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- // apply the householder transformation
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
-
- // update our table of squared norms of the columns
- m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
- }
-
- m_colsPermutation.setIdentity(PermIndexType(cols));
- for(PermIndexType k = 0; k < m_nonzero_pivots; ++k)
- m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-
- return *this;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- const Index cols = dec().cols(),
- nonzero_pivots = dec().nonzeroPivots();
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename Rhs::PlainObject c(rhs());
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
- .setLength(dec().nonzeroPivots())
- .transpose()
- );
-
- dec().matrixR()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
- }
-};
-
-} // end namespace internal
-
-/** \returns the matrix Q as a sequence of householder transformations */
-template<typename MatrixType>
-typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
- ::householderQ() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots);
-}
-
-#ifndef __CUDACC__
-/** \return the column-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class ColPivHouseholderQR
- */
-template<typename Derived>
-const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::colPivHouseholderQr() const
-{
- return ColPivHouseholderQR<PlainObject>(eval());
-}
-#endif // __CUDACC__
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
diff --git a/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR_MKL.h b/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR_MKL.h
deleted file mode 100644
index b5b1983265..0000000000
--- a/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR_MKL.h
+++ /dev/null
@@ -1,99 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Householder QR decomposition of a matrix with column pivoting based on
- * LAPACKE_?geqp3 function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_MKL_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_QR_COLPIV(EIGTYPE, MKLTYPE, MKLPREFIX, EIGCOLROW, MKLCOLROW) \
-template<> inline \
-ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >& \
-ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >::compute( \
- const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix) \
-\
-{ \
- using std::abs; \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
- typedef MatrixType::Scalar Scalar; \
- typedef MatrixType::RealScalar RealScalar; \
- Index rows = matrix.rows();\
- Index cols = matrix.cols();\
- Index size = matrix.diagonalSize();\
-\
- m_qr = matrix;\
- m_hCoeffs.resize(size);\
-\
- m_colsTranspositions.resize(cols);\
- /*Index number_of_transpositions = 0;*/ \
-\
- m_nonzero_pivots = 0; \
- m_maxpivot = RealScalar(0);\
- m_colsPermutation.resize(cols); \
- m_colsPermutation.indices().setZero(); \
-\
- lapack_int lda = m_qr.outerStride(), i; \
- lapack_int matrix_order = MKLCOLROW; \
- LAPACKE_##MKLPREFIX##geqp3( matrix_order, rows, cols, (MKLTYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (MKLTYPE*)m_hCoeffs.data()); \
- m_isInitialized = true; \
- m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
- m_hCoeffs.adjointInPlace(); \
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); \
- lapack_int *perm = m_colsPermutation.indices().data(); \
- for(i=0;i<size;i++) { \
- m_nonzero_pivots += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);\
- } \
- for(i=0;i<cols;i++) perm[i]--;\
-\
- /*m_det_pq = (number_of_transpositions%2) ? -1 : 1; // TODO: It's not needed now; fix upon availability in Eigen */ \
-\
- return *this; \
-}
-
-EIGEN_MKL_QR_COLPIV(double, double, d, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_QR_COLPIV(float, float, s, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_QR_COLPIV(dcomplex, MKL_Complex16, z, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_QR_COLPIV(scomplex, MKL_Complex8, c, ColMajor, LAPACK_COL_MAJOR)
-
-EIGEN_MKL_QR_COLPIV(double, double, d, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_QR_COLPIV(float, float, s, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_QR_COLPIV(dcomplex, MKL_Complex16, z, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_QR_COLPIV(scomplex, MKL_Complex8, c, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_MKL_H
diff --git a/third_party/eigen3/Eigen/src/QR/FullPivHouseholderQR.h b/third_party/eigen3/Eigen/src/QR/FullPivHouseholderQR.h
deleted file mode 100644
index a7b0fc16f3..0000000000
--- a/third_party/eigen3/Eigen/src/QR/FullPivHouseholderQR.h
+++ /dev/null
@@ -1,616 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
-
-template<typename MatrixType>
-struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-}
-
-/** \ingroup QR_Module
- *
- * \class FullPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
- * such that
- * \f[
- * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix
- * and \b R an upper triangular matrix.
- *
- * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
- * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
- *
- * \sa MatrixBase::fullPivHouseholderQr()
- */
-template<typename _MatrixType> class FullPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef Matrix<Index, 1,
- EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
- EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
- */
- FullPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_rows_transpositions(),
- m_cols_transpositions(),
- m_cols_permutation(),
- m_temp(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa FullPivHouseholderQR()
- */
- FullPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_rows_transpositions((std::min)(rows,cols)),
- m_cols_transpositions((std::min)(rows,cols)),
- m_cols_permutation(cols),
- m_temp(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- FullPivHouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
- m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_permutation(matrix.cols()),
- m_temp(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * \c *this is the QR decomposition.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
- * and an arbitrary solution otherwise.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include FullPivHouseholderQR_solve.cpp
- * Output: \verbinclude FullPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** \returns Expression object representing the matrix Q
- */
- MatrixQReturnType matrixQ(void) const;
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- FullPivHouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_cols_permutation;
- }
-
- /** \returns a const reference to the vector of indices representing the rows transpositions */
- const IntDiagSizeVectorType& rowsTranspositions() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_rows_transpositions;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */ inline const
- internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- FullPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of U.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- IntDiagSizeVectorType m_rows_transpositions;
- IntDiagSizeVectorType m_cols_transpositions;
- PermutationType m_cols_permutation;
- RowVectorType m_temp;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- RealScalar m_precision;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- using std::abs;
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = (std::min)(rows,cols);
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
-
- m_rows_transpositions.resize(size);
- m_cols_transpositions.resize(size);
- Index number_of_transpositions = 0;
-
- RealScalar biggest(0);
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for (Index k = 0; k < size; ++k)
- {
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
- RealScalar biggest_in_corner;
-
- biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
- .cwiseAbs()
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
- row_of_biggest_in_corner += k;
- col_of_biggest_in_corner += k;
- if(k==0) biggest = biggest_in_corner;
-
- // if the corner is negligible, then we have less than full rank, and we can finish early
- if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
- {
- m_nonzero_pivots = k;
- for(Index i = k; i < size; i++)
- {
- m_rows_transpositions.coeffRef(i) = i;
- m_cols_transpositions.coeffRef(i) = i;
- m_hCoeffs.coeffRef(i) = Scalar(0);
- }
- break;
- }
-
- m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
- m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
- if(k != row_of_biggest_in_corner) {
- m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
- ++number_of_transpositions;
- }
- if(k != col_of_biggest_in_corner) {
- m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
- ++number_of_transpositions;
- }
-
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
- }
-
- m_cols_permutation.setIdentity(cols);
- for(Index k = 0; k < size; ++k)
- m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-
- return *this;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- const Index rows = dec().rows(), cols = dec().cols();
- eigen_assert(rhs().rows() == rows);
-
- // FIXME introduce nonzeroPivots() and use it here. and more generally,
- // make the same improvements in this dec as in FullPivLU.
- if(dec().rank()==0)
- {
- dst.setZero();
- return;
- }
-
- typename Rhs::PlainObject c(rhs());
-
- Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
- for (Index k = 0; k < dec().rank(); ++k)
- {
- Index remainingSize = rows-k;
- c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
- c.bottomRightCorner(remainingSize, rhs().cols())
- .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
- dec().hCoeffs().coeff(k), &temp.coeffRef(0));
- }
-
- dec().matrixQR()
- .topLeftCorner(dec().rank(), dec().rank())
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(dec().rank()));
-
- for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
- }
-};
-
-/** \ingroup QR_Module
- *
- * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
- *
- * \tparam MatrixType type of underlying dense matrix
- */
-template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
- : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
- MatrixType::MaxRowsAtCompileTime> WorkVectorType;
-
- FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
- const HCoeffsType& hCoeffs,
- const IntDiagSizeVectorType& rowsTranspositions)
- : m_qr(qr),
- m_hCoeffs(hCoeffs),
- m_rowsTranspositions(rowsTranspositions)
- {}
-
- template <typename ResultType>
- void evalTo(ResultType& result) const
- {
- const Index rows = m_qr.rows();
- WorkVectorType workspace(rows);
- evalTo(result, workspace);
- }
-
- template <typename ResultType>
- void evalTo(ResultType& result, WorkVectorType& workspace) const
- {
- using numext::conj;
- // compute the product H'_0 H'_1 ... H'_n-1,
- // where H_k is the k-th Householder transformation I - h_k v_k v_k'
- // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
- const Index rows = m_qr.rows();
- const Index cols = m_qr.cols();
- const Index size = (std::min)(rows, cols);
- workspace.resize(rows);
- result.setIdentity(rows, rows);
- for (Index k = size-1; k >= 0; k--)
- {
- result.block(k, k, rows-k, rows-k)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
- result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
- }
- }
-
- Index rows() const { return m_qr.rows(); }
- Index cols() const { return m_qr.rows(); }
-
-protected:
- typename MatrixType::Nested m_qr;
- typename HCoeffsType::Nested m_hCoeffs;
- typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
-};
-
-} // end namespace internal
-
-template<typename MatrixType>
-inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
-{
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
-}
-
-#ifndef __CUDACC__
-/** \return the full-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class FullPivHouseholderQR
- */
-template<typename Derived>
-const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::fullPivHouseholderQr() const
-{
- return FullPivHouseholderQR<PlainObject>(eval());
-}
-#endif // __CUDACC__
-
-} // end namespace Eigen
-
-#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
diff --git a/third_party/eigen3/Eigen/src/QR/HouseholderQR.h b/third_party/eigen3/Eigen/src/QR/HouseholderQR.h
deleted file mode 100644
index 352dbf3f0e..0000000000
--- a/third_party/eigen3/Eigen/src/QR/HouseholderQR.h
+++ /dev/null
@@ -1,382 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2010 Vincent Lejeune
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_QR_H
-#define EIGEN_QR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- *
- * \class HouseholderQR
- *
- * \brief Householder QR decomposition of a matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
- * The result is stored in a compact way compatible with LAPACK.
- *
- * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
- * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
- *
- * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
- * FullPivHouseholderQR or ColPivHouseholderQR.
- *
- * \sa MatrixBase::householderQr()
- */
-template<typename _MatrixType> class HouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via HouseholderQR::compute(const MatrixType&).
- */
- HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa HouseholderQR()
- */
- HouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_temp(cols),
- m_isInitialized(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- HouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include HouseholderQR_solve.cpp
- * Output: \verbinclude HouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<HouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
- *
- * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
- * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
- *
- * Example: \include HouseholderQR_householderQ.cpp
- * Output: \verbinclude HouseholderQR_householderQ.out
- */
- HouseholderSequenceType householderQ() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- * in a LAPACK-compatible way.
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return m_qr;
- }
-
- HouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- RowVectorType m_temp;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-namespace internal {
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs>
-void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
-{
- typedef typename MatrixQR::Index Index;
- typedef typename MatrixQR::Scalar Scalar;
- typedef typename MatrixQR::RealScalar RealScalar;
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows,cols);
-
- eigen_assert(hCoeffs.size() == size);
-
- typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- for(Index k = 0; k < size; ++k)
- {
- Index remainingRows = rows - k;
- Index remainingCols = cols - k - 1;
-
- RealScalar beta;
- mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
- mat.coeffRef(k,k) = beta;
-
- // apply H to remaining part of m_qr from the left
- mat.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
- }
-}
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs,
- typename MatrixQRScalar = typename MatrixQR::Scalar,
- bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
-struct householder_qr_inplace_blocked
-{
- // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
- static void run(MatrixQR& mat, HCoeffs& hCoeffs,
- typename MatrixQR::Index maxBlockSize=32,
- typename MatrixQR::Scalar* tempData = 0)
- {
- typedef typename MatrixQR::Index Index;
- typedef typename MatrixQR::Scalar Scalar;
- typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
-
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows, cols);
-
- typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- Index blockSize = (std::min)(maxBlockSize,size);
-
- Index k = 0;
- for (k = 0; k < size; k += blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index tcols = cols - k - bs; // trailing columns
- Index brows = rows-k; // rows of the block
-
- // partition the matrix:
- // A00 | A01 | A02
- // mat = A10 | A11 | A12
- // A20 | A21 | A22
- // and performs the qr dec of [A11^T A12^T]^T
- // and update [A21^T A22^T]^T using level 3 operations.
- // Finally, the algorithm continue on A22
-
- BlockType A11_21 = mat.block(k,k,brows,bs);
- Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
-
- householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
-
- if(tcols)
- {
- BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
- apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
- }
- }
- }
-};
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- const Index rows = dec().rows(), cols = dec().cols();
- const Index rank = (std::min)(rows, cols);
- eigen_assert(rhs().rows() == rows);
-
- typename Rhs::PlainObject c(rhs());
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(
- dec().matrixQR().leftCols(rank),
- dec().hCoeffs().head(rank)).transpose()
- );
-
- dec().matrixQR()
- .topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(rank));
-
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(cols-rank).setZero();
- }
-};
-
-} // end namespace internal
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = (std::min)(rows,cols);
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
-
- m_isInitialized = true;
- return *this;
-}
-
-#ifndef __CUDACC__
-/** \return the Householder QR decomposition of \c *this.
- *
- * \sa class HouseholderQR
- */
-template<typename Derived>
-const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::householderQr() const
-{
- return HouseholderQR<PlainObject>(eval());
-}
-#endif // __CUDACC__
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_H
diff --git a/third_party/eigen3/Eigen/src/QR/HouseholderQR_MKL.h b/third_party/eigen3/Eigen/src/QR/HouseholderQR_MKL.h
deleted file mode 100644
index 8a3a7e4063..0000000000
--- a/third_party/eigen3/Eigen/src/QR/HouseholderQR_MKL.h
+++ /dev/null
@@ -1,71 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Householder QR decomposition of a matrix w/o pivoting based on
- * LAPACKE_?geqrf function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_QR_MKL_H
-#define EIGEN_QR_MKL_H
-
-#include "../Core/util/MKL_support.h"
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_QR_NOPIV(EIGTYPE, MKLTYPE, MKLPREFIX) \
-template<typename MatrixQR, typename HCoeffs> \
-struct householder_qr_inplace_blocked<MatrixQR, HCoeffs, EIGTYPE, true> \
-{ \
- static void run(MatrixQR& mat, HCoeffs& hCoeffs, \
- typename MatrixQR::Index = 32, \
- typename MatrixQR::Scalar* = 0) \
- { \
- lapack_int m = (lapack_int) mat.rows(); \
- lapack_int n = (lapack_int) mat.cols(); \
- lapack_int lda = (lapack_int) mat.outerStride(); \
- lapack_int matrix_order = (MatrixQR::IsRowMajor) ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- LAPACKE_##MKLPREFIX##geqrf( matrix_order, m, n, (MKLTYPE*)mat.data(), lda, (MKLTYPE*)hCoeffs.data()); \
- hCoeffs.adjointInPlace(); \
- } \
-};
-
-EIGEN_MKL_QR_NOPIV(double, double, d)
-EIGEN_MKL_QR_NOPIV(float, float, s)
-EIGEN_MKL_QR_NOPIV(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_QR_NOPIV(scomplex, MKL_Complex8, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_MKL_H