1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCpu.h"
#include "SkOpts.h"
#include "SkRasterPipeline.h"
#include "SkStream.h"
#if defined(_MSC_VER)
#include <windows.h>
#else
#include <sys/mman.h>
#endif
#include "SkSplicer_generated.h"
#include "SkSplicer_generated_lowp.h"
#include "SkSplicer_shared.h"
// Uncomment to dump output JIT'd pipeline.
//#define DUMP "/tmp/dump.bin"
//#define DUMP "/data/local/tmp/dump.bin"
//
// On x86, we'll include IACA markers too.
// https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
// Running IACA will disassemble, and more.
// $ ./iaca.sh -arch HSW -64 -mark 0 /tmp/dump.bin | less
//
// To disassemble an aarch64 dump,
// $ adb pull /data/local/tmp/dump.bin; gobjdump -b binary -D dump.bin -m aarch64 | less
//
// To disassemble an armv7 dump,
// $ adb pull /data/local/tmp/dump.bin; gobjdump -b binary -D dump.bin -m arm | less
namespace {
// Stages expect these constants to be set to these values.
// It's fine to rearrange and add new ones if you update SkSplicer_constants.
static const SkSplicer_constants kConstants = {
1.0f, 255.0f, 1/255.0f, 0x000000ff,
0.0025f, 0.6975f, 0.3000f, 1/12.92f, 0.055f, // from_srgb
12.46f, 0.411192f, 0.689206f, -0.0988f, 0.0043f, // to_srgb
};
static const SkSplicer_constants_lowp kConstants_lowp = {
0x8000, 0x8081,
};
// We do this a lot, so it's nice to infer the correct size. Works fine with arrays.
template <typename T>
static void splice(SkWStream* buf, const T& val) {
// This null check makes determining whether we can drop to lowp easier.
// It's always known at compile time..
if (buf) {
buf->write(&val, sizeof(val));
}
}
#if defined(__aarch64__)
static constexpr int kStride = 4;
static void set_ctx(SkWStream* buf, void* ctx) {
uint16_t parts[4];
memcpy(parts, &ctx, 8);
splice(buf, 0xd2f00000 | (parts[3] << 5) | 0x2); // move 16-bit intermediate << 48 into x2
splice(buf, 0xf2c00000 | (parts[2] << 5) | 0x2); // merge 16-bit intermediate << 32 into x2
splice(buf, 0xf2a00000 | (parts[1] << 5) | 0x2); // merge 16-bit intermediate << 16 into x2
splice(buf, 0xf2800000 | (parts[0] << 5) | 0x2); // merge 16-bit intermediate << 0 into x2
}
static void loop(SkWStream* buf, int loop_start) {
splice(buf, 0xeb01001f); // cmp x0, x1
int off = loop_start - (int)buf->bytesWritten();
off /= 4; // bytes -> instructions, still signed
off = (off & 0x7ffff) << 5; // 19 bit maximum range (+- 256K instructions)
splice(buf, 0x54000003 | off); // b.cc loop_start (cc == "carry clear", unsigned less than)
}
static void ret(SkWStream* buf) {
splice(buf, 0xd65f03c0); // ret
}
#elif defined(__ARM_NEON__)
static constexpr int kStride = 2;
static void set_ctx(SkWStream* buf, void* ctx) {
uint16_t parts[2];
auto encode = [](uint16_t part) -> uint32_t {
return (part & 0xf000) << 4 | (part & 0xfff);
};
memcpy(parts, &ctx, 4);
splice(buf, 0xe3002000 | encode(parts[0])); // mov r2, <bottom 16 bits>
splice(buf, 0xe3402000 | encode(parts[1])); // movt r2, <top 16 bits>
}
static void loop(SkWStream* buf, int loop_start) {
splice(buf, 0xe1500001); // cmp r0, r1
int off = loop_start - ((int)buf->bytesWritten() + 8 /*ARM is weird*/);
off /= 4; // bytes -> instructions, still signed
off = (off & 0x00ffffff);
splice(buf, 0x3a000000 | off); // bcc loop_start
}
static void ret(SkWStream* buf) {
splice(buf, 0xe12fff1e); // bx lr
}
#else
static constexpr int kStride = 8;
static void set_ctx(SkWStream* buf, void* ctx) {
static const uint8_t movabsq_rdx[] = { 0x48, 0xba };
splice(buf, movabsq_rdx); // movabsq <next 8 bytes>, %rdx
splice(buf, ctx);
}
static void loop(SkWStream* buf, int loop_start) {
static const uint8_t cmp_rsi_rdi[] = { 0x48, 0x39, 0xf7 };
static const uint8_t jb_near[] = { 0x0f, 0x8c };
splice(buf, cmp_rsi_rdi); // cmp %rsi, %rdi
splice(buf, jb_near); // jb <next 4 bytes> (b == "before", unsigned less than)
splice(buf, loop_start - (int)(buf->bytesWritten() + 4));
}
static void ret(SkWStream* buf) {
static const uint8_t vzeroupper[] = { 0xc5, 0xf8, 0x77 };
static const uint8_t ret[] = { 0xc3 };
splice(buf, vzeroupper);
splice(buf, ret);
}
#endif
#if defined(_MSC_VER)
// Adapt from MS ABI to System V ABI used by stages.
static void before_loop(SkWStream* buf) {
static const uint8_t ms_to_system_v[] = {
0x56, // push %rsi
0x57, // push %rdi
0x48,0x81,0xec,0xa8,0x00,0x00,0x00, // sub $0xa8,%rsp
0xc5,0x78,0x29,0xbc,0x24,0x90,0x00,0x00,0x00, // vmovaps %xmm15,0x90(%rsp)
0xc5,0x78,0x29,0xb4,0x24,0x80,0x00,0x00,0x00, // vmovaps %xmm14,0x80(%rsp)
0xc5,0x78,0x29,0x6c,0x24,0x70, // vmovaps %xmm13,0x70(%rsp)
0xc5,0x78,0x29,0x64,0x24,0x60, // vmovaps %xmm12,0x60(%rsp)
0xc5,0x78,0x29,0x5c,0x24,0x50, // vmovaps %xmm11,0x50(%rsp)
0xc5,0x78,0x29,0x54,0x24,0x40, // vmovaps %xmm10,0x40(%rsp)
0xc5,0x78,0x29,0x4c,0x24,0x30, // vmovaps %xmm9,0x30(%rsp)
0xc5,0x78,0x29,0x44,0x24,0x20, // vmovaps %xmm8,0x20(%rsp)
0xc5,0xf8,0x29,0x7c,0x24,0x10, // vmovaps %xmm7,0x10(%rsp)
0xc5,0xf8,0x29,0x34,0x24, // vmovaps %xmm6,(%rsp)
0x48,0x89,0xcf, // mov %rcx,%rdi
0x48,0x89,0xd6, // mov %rdx,%rsi
0x4c,0x89,0xc2, // mov %r8,%rdx
0x4c,0x89,0xc9, // mov %r9,%rcx
};
splice(buf, ms_to_system_v);
}
static void after_loop(SkWStream* buf) {
static const uint8_t system_v_to_ms[] = {
0xc5,0xf8,0x28,0x34,0x24, // vmovaps (%rsp),%xmm6
0xc5,0xf8,0x28,0x7c,0x24,0x10, // vmovaps 0x10(%rsp),%xmm7
0xc5,0x78,0x28,0x44,0x24,0x20, // vmovaps 0x20(%rsp),%xmm8
0xc5,0x78,0x28,0x4c,0x24,0x30, // vmovaps 0x30(%rsp),%xmm9
0xc5,0x78,0x28,0x54,0x24,0x40, // vmovaps 0x40(%rsp),%xmm10
0xc5,0x78,0x28,0x5c,0x24,0x50, // vmovaps 0x50(%rsp),%xmm11
0xc5,0x78,0x28,0x64,0x24,0x60, // vmovaps 0x60(%rsp),%xmm12
0xc5,0x78,0x28,0x6c,0x24,0x70, // vmovaps 0x70(%rsp),%xmm13
0xc5,0x78,0x28,0xb4,0x24,0x80,0x00,0x00,0x00, // vmovaps 0x80(%rsp),%xmm14
0xc5,0x78,0x28,0xbc,0x24,0x90,0x00,0x00,0x00, // vmovaps 0x90(%rsp),%xmm15
0x48,0x81,0xc4,0xa8,0x00,0x00,0x00, // add $0xa8,%rsp
0x5f, // pop %rdi
0x5e, // pop %rsi
};
splice(buf, system_v_to_ms);
}
#elif !defined(__aarch64__) && !defined(__ARM_NEON__) && defined(DUMP)
// IACA start and end markers.
static const uint8_t ud2[] = { 0x0f, 0x0b }; // undefined... crashes when run
static const uint8_t nop3[] = { 0x64, 0x67, 0x90 }; // 3 byte no-op
static const uint8_t movl_ebx[] = { 0xbb }; // move next 4 bytes into ebx
static void before_loop(SkWStream* buf) {
splice(buf, ud2);
splice(buf, movl_ebx);
splice(buf, 111);
splice(buf, nop3);
}
static void after_loop(SkWStream* buf) {
splice(buf, movl_ebx);
splice(buf, 222);
splice(buf, nop3);
splice(buf, ud2);
}
#else
static void before_loop(SkWStream*) {}
static void after_loop (SkWStream*) {}
#endif
// We can only mprotect / VirtualProtect at 4K page granularity.
static size_t round_up_to_full_pages(size_t len) {
size_t size = 0;
while (size < len) {
size += 4096;
}
return size;
}
#if defined(_MSC_VER)
// Copy len bytes from src to memory that's executable. cleanup with cleanup_executable_mem().
static void* copy_to_executable_mem(const void* src, size_t* len) {
if (!src || !*len) {
return nullptr;
}
size_t alloc = round_up_to_full_pages(*len);
auto fn = VirtualAlloc(nullptr, alloc, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
memcpy(fn, src, *len);
DWORD dont_care;
VirtualProtect(fn, alloc, PAGE_EXECUTE_READ, &dont_care);
*len = alloc;
return fn;
}
static void cleanup_executable_mem(void* fn, size_t len) {
if (fn) {
VirtualFree(fn, 0, MEM_RELEASE);
}
}
#else
static void* copy_to_executable_mem(const void* src, size_t* len) {
if (!src || !*len) {
return nullptr;
}
size_t alloc = round_up_to_full_pages(*len);
auto fn = mmap(nullptr, alloc, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
memcpy(fn, src, *len);
mprotect(fn, alloc, PROT_READ|PROT_EXEC);
__builtin___clear_cache((char*)fn, (char*)fn + *len); // Essential on ARM; no-op on x86.
*len = alloc;
return fn;
}
static void cleanup_executable_mem(void* fn, size_t len) {
if (fn) {
munmap(fn, len);
}
}
#endif
static bool splice_lowp(SkWStream* buf, SkRasterPipeline::StockStage st) {
switch (st) {
default: return false;
case SkRasterPipeline::clamp_0: break; // lowp can't go below 0.
#define CASE(st) case SkRasterPipeline::st: splice(buf, kSplice_##st##_lowp); break
CASE(clear);
CASE(plus_);
CASE(srcover);
CASE(dstover);
CASE(clamp_1);
CASE(clamp_a);
CASE(swap);
CASE(move_src_dst);
CASE(move_dst_src);
CASE(premul);
CASE(scale_u8);
CASE(load_8888);
CASE(store_8888);
#undef CASE
}
return true;
}
static bool splice_highp(SkWStream* buf, SkRasterPipeline::StockStage st) {
switch (st) {
default: return false;
#define CASE(st) case SkRasterPipeline::st: splice(buf, kSplice_##st); break
CASE(clear);
CASE(plus_);
CASE(srcover);
CASE(dstover);
CASE(clamp_0);
CASE(clamp_1);
CASE(clamp_a);
CASE(swap);
CASE(move_src_dst);
CASE(move_dst_src);
CASE(premul);
CASE(unpremul);
CASE(from_srgb);
CASE(to_srgb);
CASE(scale_u8);
CASE(load_tables);
CASE(load_8888);
CASE(store_8888);
CASE(load_f16);
CASE(store_f16);
CASE(matrix_3x4);
#undef CASE
}
return true;
}
struct Spliced {
Spliced(const SkRasterPipeline::Stage* stages, int nstages) {
// We always create a backup interpreter pipeline,
// - to handle any program we can't, and
// - to handle the n < stride tails.
fBackup = SkOpts::compile_pipeline(stages, nstages);
fSplicedLen = 0;
fSpliced = nullptr;
fLowp = false;
// If we return early anywhere in here, !fSpliced means we'll use fBackup instead.
#if defined(__aarch64__)
#elif defined(__ARM_NEON__)
// Late generation ARMv7, e.g. Cortex A15 or Krait.
if (!SkCpu::Supports(SkCpu::NEON|SkCpu::NEON_FMA|SkCpu::VFP_FP16)) {
return;
}
#else
// To keep things simple, only one x86 target supported: Haswell+ x86-64.
if (!SkCpu::Supports(SkCpu::HSW) || sizeof(void*) != 8) {
return;
}
#endif
// See if all the stages can run in lowp mode. If so, we can run at ~2x speed.
bool lowp = true;
for (int i = 0; i < nstages; i++) {
if (!splice_lowp(nullptr, stages[i].stage)) {
//SkDebugf("SkSplicer can't yet handle stage %d in lowp.\n", stages[i].stage);
lowp = false;
break;
}
}
fLowp = lowp;
SkDynamicMemoryWStream buf;
// Our loop is the equivalent of this C++ code:
// do {
// ... run spliced stages...
// x += stride;
// } while(x < limit);
before_loop(&buf);
auto loop_start = buf.bytesWritten(); // Think of this like a label, loop_start:
for (int i = 0; i < nstages; i++) {
// If a stage has a context pointer, load it into rdx/x2, Stage argument 3 "ctx".
if (stages[i].ctx) {
set_ctx(&buf, stages[i].ctx);
}
// Splice in the code for the Stages, generated offline into SkSplicer_generated.h.
if (lowp) {
SkAssertResult(splice_lowp(&buf, stages[i].stage));
continue;
}
if (!splice_highp(&buf, stages[i].stage)) {
//SkDebugf("SkSplicer can't yet handle stage %d.\n", stages[i].stage);
return;
}
}
lowp ? splice(&buf, kSplice_inc_x_lowp)
: splice(&buf, kSplice_inc_x);
loop(&buf, loop_start); // Loop back to handle more pixels if not done.
after_loop(&buf);
ret(&buf); // We're done.
auto data = buf.detachAsData();
fSplicedLen = data->size();
fSpliced = copy_to_executable_mem(data->data(), &fSplicedLen);
#if defined(DUMP)
SkFILEWStream(DUMP).write(data->data(), data->size());
#endif
}
// Spliced is stored in a std::function, so it needs to be copyable.
Spliced(const Spliced& o) : fBackup (o.fBackup)
, fSplicedLen(o.fSplicedLen)
, fSpliced (copy_to_executable_mem(o.fSpliced, &fSplicedLen))
, fLowp (o.fLowp) {}
~Spliced() {
cleanup_executable_mem(fSpliced, fSplicedLen);
}
// Here's where we call fSpliced if we created it, fBackup if not.
void operator()(size_t x, size_t y, size_t n) const {
size_t stride = fLowp ? kStride*2
: kStride;
size_t body = n/stride*stride; // Largest multiple of stride (2, 4, 8, or 16) <= n.
if (fSpliced && body) { // Can we run fSpliced for at least one stride?
// TODO: At some point we will want to pass in y...
using Fn = void(size_t x, size_t limit, void* ctx, const void* k);
auto k = fLowp ? (const void*)&kConstants_lowp
: (const void*)&kConstants;
((Fn*)fSpliced)(x, x+body, nullptr, k);
// Fall through to fBackup for any n<stride last pixels.
x += body;
n -= body;
}
fBackup(x,y,n);
}
std::function<void(size_t, size_t, size_t)> fBackup;
size_t fSplicedLen;
void* fSpliced;
bool fLowp;
};
}
std::function<void(size_t, size_t, size_t)> SkRasterPipeline::jit() const {
return Spliced(fStages.data(), SkToInt(fStages.size()));
}
|