1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsConic_DEFINED
#define SkPathOpsConic_DEFINED
#include "SkPathOpsPoint.h"
#include "SkPathOpsQuad.h"
struct SkDConic {
static const int kPointCount = 3;
static const int kPointLast = kPointCount - 1;
static const int kMaxIntersections = 4;
SkDQuad fPts;
SkScalar fWeight;
bool collapsed() const {
return fPts.collapsed();
}
bool controlsInside() const {
return fPts.controlsInside();
}
void debugInit() {
fPts.debugInit();
}
SkDConic flip() const {
SkDConic result = {{{fPts[2], fPts[1], fPts[0]}}, fWeight};
return result;
}
static bool IsConic() { return true; }
const SkDConic& set(const SkPoint pts[kPointCount], SkScalar weight) {
fPts.set(pts);
fWeight = weight;
return *this;
}
const SkDPoint& operator[](int n) const { return fPts[n]; }
SkDPoint& operator[](int n) { return fPts[n]; }
static int AddValidTs(double s[], int realRoots, double* t) {
return SkDQuad::AddValidTs(s, realRoots, t);
}
void align(int endIndex, SkDPoint* dstPt) const {
fPts.align(endIndex, dstPt);
}
SkDVector dxdyAtT(double t) const;
static int FindExtrema(const double src[], SkScalar weight, double tValue[1]);
bool hullIntersects(const SkDQuad& quad, bool* isLinear) const {
return fPts.hullIntersects(quad, isLinear);
}
bool hullIntersects(const SkDConic& conic, bool* isLinear) const {
return fPts.hullIntersects(conic.fPts, isLinear);
}
bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const;
bool isLinear(int startIndex, int endIndex) const {
return fPts.isLinear(startIndex, endIndex);
}
bool monotonicInX() const {
return fPts.monotonicInX();
}
bool monotonicInY() const {
return fPts.monotonicInY();
}
void otherPts(int oddMan, const SkDPoint* endPt[2]) const {
fPts.otherPts(oddMan, endPt);
}
SkDPoint ptAtT(double t) const;
static int RootsReal(double A, double B, double C, double t[2]) {
return SkDQuad::RootsReal(A, B, C, t);
}
static int RootsValidT(const double A, const double B, const double C, double s[2]) {
return SkDQuad::RootsValidT(A, B, C, s);
}
SkDConic subDivide(double t1, double t2) const;
static SkDConic SubDivide(const SkPoint a[kPointCount], SkScalar weight, double t1, double t2) {
SkDConic conic;
conic.set(a, weight);
return conic.subDivide(t1, t2);
}
SkDPoint subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
SkScalar* weight) const;
static SkDPoint SubDivide(const SkPoint pts[kPointCount], SkScalar weight,
const SkDPoint& a, const SkDPoint& c,
double t1, double t2, SkScalar* newWeight) {
SkDConic conic;
conic.set(pts, weight);
return conic.subDivide(a, c, t1, t2, newWeight);
}
// utilities callable by the user from the debugger when the implementation code is linked in
void dump() const;
void dumpID(int id) const;
void dumpInner() const;
};
#endif
|