1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkBitmapProcState_filter.h"
#include "SkColorPriv.h"
#include "SkFilterProc.h"
#include "SkPaint.h"
#include "SkShader.h" // for tilemodes
#include "SkUtilsArm.h"
// Required to ensure the table is part of the final binary.
extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
#define NAME_WRAP(x) x ## _neon
#include "SkBitmapProcState_filter_neon.h"
#include "SkBitmapProcState_procs.h"
const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = {
S32_opaque_D32_nofilter_DXDY_neon,
S32_alpha_D32_nofilter_DXDY_neon,
S32_opaque_D32_nofilter_DX_neon,
S32_alpha_D32_nofilter_DX_neon,
S32_opaque_D32_filter_DXDY_neon,
S32_alpha_D32_filter_DXDY_neon,
S32_opaque_D32_filter_DX_neon,
S32_alpha_D32_filter_DX_neon,
S16_opaque_D32_nofilter_DXDY_neon,
S16_alpha_D32_nofilter_DXDY_neon,
S16_opaque_D32_nofilter_DX_neon,
S16_alpha_D32_nofilter_DX_neon,
S16_opaque_D32_filter_DXDY_neon,
S16_alpha_D32_filter_DXDY_neon,
S16_opaque_D32_filter_DX_neon,
S16_alpha_D32_filter_DX_neon,
SI8_opaque_D32_nofilter_DXDY_neon,
SI8_alpha_D32_nofilter_DXDY_neon,
SI8_opaque_D32_nofilter_DX_neon,
SI8_alpha_D32_nofilter_DX_neon,
SI8_opaque_D32_filter_DXDY_neon,
SI8_alpha_D32_filter_DXDY_neon,
SI8_opaque_D32_filter_DX_neon,
SI8_alpha_D32_filter_DX_neon,
S4444_opaque_D32_nofilter_DXDY_neon,
S4444_alpha_D32_nofilter_DXDY_neon,
S4444_opaque_D32_nofilter_DX_neon,
S4444_alpha_D32_nofilter_DX_neon,
S4444_opaque_D32_filter_DXDY_neon,
S4444_alpha_D32_filter_DXDY_neon,
S4444_opaque_D32_filter_DX_neon,
S4444_alpha_D32_filter_DX_neon,
// A8 treats alpha/opauqe the same (equally efficient)
SA8_alpha_D32_nofilter_DXDY_neon,
SA8_alpha_D32_nofilter_DXDY_neon,
SA8_alpha_D32_nofilter_DX_neon,
SA8_alpha_D32_nofilter_DX_neon,
SA8_alpha_D32_filter_DXDY_neon,
SA8_alpha_D32_filter_DXDY_neon,
SA8_alpha_D32_filter_DX_neon,
SA8_alpha_D32_filter_DX_neon,
// todo: possibly specialize on opaqueness
SG8_alpha_D32_nofilter_DXDY_neon,
SG8_alpha_D32_nofilter_DXDY_neon,
SG8_alpha_D32_nofilter_DX_neon,
SG8_alpha_D32_nofilter_DX_neon,
SG8_alpha_D32_filter_DXDY_neon,
SG8_alpha_D32_filter_DXDY_neon,
SG8_alpha_D32_filter_DX_neon,
SG8_alpha_D32_filter_DX_neon,
};
///////////////////////////////////////////////////////////////////////////////
#include <arm_neon.h>
#include "SkConvolver.h"
// Convolves horizontally along a single row. The row data is given in
// |srcData| and continues for the numValues() of the filter.
void convolveHorizontally_neon(const unsigned char* srcData,
const SkConvolutionFilter1D& filter,
unsigned char* outRow,
bool hasAlpha) {
// Loop over each pixel on this row in the output image.
int numValues = filter.numValues();
for (int outX = 0; outX < numValues; outX++) {
uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
// Get the filter that determines the current output pixel.
int filterOffset, filterLength;
const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
filter.FilterForValue(outX, &filterOffset, &filterLength);
// Compute the first pixel in this row that the filter affects. It will
// touch |filterLength| pixels (4 bytes each) after this.
const unsigned char* rowToFilter = &srcData[filterOffset * 4];
// Apply the filter to the row to get the destination pixel in |accum|.
int32x4_t accum = vdupq_n_s32(0);
for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
// Load 4 coefficients
int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
coeffs = vld1_s16(filterValues);
coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
// Load pixels and calc
uint8x16_t pixels = vld1q_u8(rowToFilter);
int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
int16x4_t p0_src = vget_low_s16(p01_16);
int16x4_t p1_src = vget_high_s16(p01_16);
int16x4_t p2_src = vget_low_s16(p23_16);
int16x4_t p3_src = vget_high_s16(p23_16);
int32x4_t p0 = vmull_s16(p0_src, coeff0);
int32x4_t p1 = vmull_s16(p1_src, coeff1);
int32x4_t p2 = vmull_s16(p2_src, coeff2);
int32x4_t p3 = vmull_s16(p3_src, coeff3);
accum += p0;
accum += p1;
accum += p2;
accum += p3;
// Advance the pointers
rowToFilter += 16;
filterValues += 4;
}
int r = filterLength & 3;
if (r) {
const uint16_t mask[4][4] = {
{0, 0, 0, 0},
{0xFFFF, 0, 0, 0},
{0xFFFF, 0xFFFF, 0, 0},
{0xFFFF, 0xFFFF, 0xFFFF, 0}
};
uint16x4_t coeffs;
int16x4_t coeff0, coeff1, coeff2;
coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues));
coeffs &= vld1_u16(&mask[r][0]);
coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0));
coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1));
coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2));
// Load pixels and calc
uint8x16_t pixels = vld1q_u8(rowToFilter);
int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0);
int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1);
int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2);
accum += p0;
accum += p1;
accum += p2;
}
// Bring this value back in range. All of the filter scaling factors
// are in fixed point with kShiftBits bits of fractional part.
accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);
// Pack and store the new pixel.
int16x4_t accum16 = vqmovn_s32(accum);
uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0);
outRow += 4;
}
}
// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |sourceDataRows| array, with each row
// being |pixelWidth| wide.
//
// The output must have room for |pixelWidth * 4| bytes.
template<bool hasAlpha>
void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
int filterLength,
unsigned char* const* sourceDataRows,
int pixelWidth,
unsigned char* outRow) {
int width = pixelWidth & ~3;
int32x4_t accum0, accum1, accum2, accum3;
int16x4_t coeff16;
// Output four pixels per iteration (16 bytes).
for (int outX = 0; outX < width; outX += 4) {
// Accumulated result for each pixel. 32 bits per RGBA channel.
accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0);
// Convolve with one filter coefficient per iteration.
for (int filterY = 0; filterY < filterLength; filterY++) {
// Duplicate the filter coefficient 4 times.
// [16] cj cj cj cj
coeff16 = vdup_n_s16(filterValues[filterY]);
// Load four pixels (16 bytes) together.
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]);
int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
int16x4_t src16_0 = vget_low_s16(src16_01);
int16x4_t src16_1 = vget_high_s16(src16_01);
int16x4_t src16_2 = vget_low_s16(src16_23);
int16x4_t src16_3 = vget_high_s16(src16_23);
accum0 += vmull_s16(src16_0, coeff16);
accum1 += vmull_s16(src16_1, coeff16);
accum2 += vmull_s16(src16_2, coeff16);
accum3 += vmull_s16(src16_3, coeff16);
}
// Shift right for fixed point implementation.
accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits);
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
// [16] a1 b1 g1 r1 a0 b0 g0 r0
int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
// [16] a3 b3 g3 r3 a2 b2 g2 r2
int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3));
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
if (hasAlpha) {
// Compute the max(ri, gi, bi) for each pixel.
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
b = vmaxq_u8(a, b); // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
// Make sure the value of alpha channel is always larger than maximum
// value of color channels.
accum8 = vmaxq_u8(b, accum8);
} else {
// Set value of alpha channels to 0xFF.
accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
}
// Store the convolution result (16 bytes) and advance the pixel pointers.
vst1q_u8(outRow, accum8);
outRow += 16;
}
// Process the leftovers when the width of the output is not divisible
// by 4, that is at most 3 pixels.
int r = pixelWidth & 3;
if (r) {
accum0 = accum1 = accum2 = vdupq_n_s32(0);
for (int filterY = 0; filterY < filterLength; ++filterY) {
coeff16 = vdup_n_s16(filterValues[filterY]);
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]);
int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
int16x4_t src16_0 = vget_low_s16(src16_01);
int16x4_t src16_1 = vget_high_s16(src16_01);
int16x4_t src16_2 = vget_low_s16(src16_23);
accum0 += vmull_s16(src16_0, coeff16);
accum1 += vmull_s16(src16_1, coeff16);
accum2 += vmull_s16(src16_2, coeff16);
}
accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2));
uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
if (hasAlpha) {
// Compute the max(ri, gi, bi) for each pixel.
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
b = vmaxq_u8(a, b); // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
// Make sure the value of alpha channel is always larger than maximum
// value of color channels.
accum8 = vmaxq_u8(b, accum8);
} else {
// Set value of alpha channels to 0xFF.
accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
}
switch(r) {
case 1:
vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0);
break;
case 2:
vst1_u32(reinterpret_cast<uint32_t*>(outRow),
vreinterpret_u32_u8(vget_low_u8(accum8)));
break;
case 3:
vst1_u32(reinterpret_cast<uint32_t*>(outRow),
vreinterpret_u32_u8(vget_low_u8(accum8)));
vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2);
break;
}
}
}
void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
int filterLength,
unsigned char* const* sourceDataRows,
int pixelWidth,
unsigned char* outRow,
bool sourceHasAlpha) {
if (sourceHasAlpha) {
convolveVertically_neon<true>(filterValues, filterLength,
sourceDataRows, pixelWidth,
outRow);
} else {
convolveVertically_neon<false>(filterValues, filterLength,
sourceDataRows, pixelWidth,
outRow);
}
}
// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
// refer to that function for detailed comments.
void convolve4RowsHorizontally_neon(const unsigned char* srcData[4],
const SkConvolutionFilter1D& filter,
unsigned char* outRow[4],
size_t outRowBytes) {
uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
int num_values = filter.numValues();
int filterOffset, filterLength;
// |mask| will be used to decimate all extra filter coefficients that are
// loaded by SIMD when |filter_length| is not divisible by 4.
// mask[0] is not used in following algorithm.
const uint16_t mask[4][4] = {
{0, 0, 0, 0},
{0xFFFF, 0, 0, 0},
{0xFFFF, 0xFFFF, 0, 0},
{0xFFFF, 0xFFFF, 0xFFFF, 0}
};
// Output one pixel each iteration, calculating all channels (RGBA) together.
for (int outX = 0; outX < num_values; outX++) {
const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
filter.FilterForValue(outX, &filterOffset, &filterLength);
// four pixels in a column per iteration.
int32x4_t accum0 = vdupq_n_s32(0);
int32x4_t accum1 = vdupq_n_s32(0);
int32x4_t accum2 = vdupq_n_s32(0);
int32x4_t accum3 = vdupq_n_s32(0);
int start = (filterOffset<<2);
// We will load and accumulate with four coefficients per iteration.
for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) {
int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
coeffs = vld1_s16(filterValues);
coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
uint8x16_t pixels;
int16x8_t p01_16, p23_16;
int32x4_t p0, p1, p2, p3;
#define ITERATION(src, accum) \
pixels = vld1q_u8(src); \
p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \
p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \
p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \
p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \
p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \
p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \
accum += p0; \
accum += p1; \
accum += p2; \
accum += p3
ITERATION(srcData[0] + start, accum0);
ITERATION(srcData[1] + start, accum1);
ITERATION(srcData[2] + start, accum2);
ITERATION(srcData[3] + start, accum3);
start += 16;
filterValues += 4;
}
int r = filterLength & 3;
if (r) {
int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
coeffs = vld1_s16(filterValues);
coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0]));
coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
uint8x16_t pixels;
int16x8_t p01_16, p23_16;
int32x4_t p0, p1, p2, p3;
ITERATION(srcData[0] + start, accum0);
ITERATION(srcData[1] + start, accum1);
ITERATION(srcData[2] + start, accum2);
ITERATION(srcData[3] + start, accum3);
}
int16x4_t accum16;
uint8x8_t res0, res1, res2, res3;
#define PACK_RESULT(accum, res) \
accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \
accum16 = vqmovn_s32(accum); \
res = vqmovun_s16(vcombine_s16(accum16, accum16));
PACK_RESULT(accum0, res0);
PACK_RESULT(accum1, res1);
PACK_RESULT(accum2, res2);
PACK_RESULT(accum3, res3);
vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0);
vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0);
vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0);
vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0);
outRow[0] += 4;
outRow[1] += 4;
outRow[2] += 4;
outRow[3] += 4;
}
}
void applySIMDPadding_neon(SkConvolutionFilter1D *filter) {
// Padding |paddingCount| of more dummy coefficients after the coefficients
// of last filter to prevent SIMD instructions which load 8 or 16 bytes
// together to access invalid memory areas. We are not trying to align the
// coefficients right now due to the opaqueness of <vector> implementation.
// This has to be done after all |AddFilter| calls.
for (int i = 0; i < 8; ++i) {
filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
}
}
void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) {
procs->fExtraHorizontalReads = 3;
procs->fConvolveVertically = &convolveVertically_neon;
procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon;
procs->fConvolveHorizontally = &convolveHorizontally_neon;
procs->fApplySIMDPadding = &applySIMDPadding_neon;
}
|