1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "glsl/GrGLSLProgramBuilder.h"
#include "GrCaps.h"
#include "GrPipeline.h"
#include "GrShaderCaps.h"
#include "GrTexturePriv.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLXferProcessor.h"
#include "SkSLCompiler.h"
const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
GrProgramDesc* desc)
: fVS(this)
, fGS(this)
, fFS(this)
, fStageIndex(-1)
, fPipeline(pipeline)
, fPrimProc(primProc)
, fDesc(desc)
, fGeometryProcessor(nullptr)
, fXferProcessor(nullptr)
, fNumVertexSamplers(0)
, fNumGeometrySamplers(0)
, fNumFragmentSamplers(0) {
}
void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders,
uint32_t featureBit,
const char* extensionName) {
if (shaders & kVertex_GrShaderFlag) {
fVS.addFeature(featureBit, extensionName);
}
if (shaders & kGeometry_GrShaderFlag) {
SkASSERT(this->primitiveProcessor().willUseGeoShader());
fGS.addFeature(featureBit, extensionName);
}
if (shaders & kFragment_GrShaderFlag) {
fFS.addFeature(featureBit, extensionName);
}
}
bool GrGLSLProgramBuilder::emitAndInstallProcs() {
// First we loop over all of the installed processors and collect coord transforms. These will
// be sent to the GrGLSLPrimitiveProcessor in its emitCode function
const GrPrimitiveProcessor& primProc = this->primitiveProcessor();
SkString inputColor;
SkString inputCoverage;
this->emitAndInstallPrimProc(primProc, &inputColor, &inputCoverage);
this->emitAndInstallFragProcs(&inputColor, &inputCoverage);
this->emitAndInstallXferProc(inputColor, inputCoverage);
this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput());
return this->checkSamplerCounts();
}
void GrGLSLProgramBuilder::emitAndInstallPrimProc(const GrPrimitiveProcessor& proc,
SkString* outputColor,
SkString* outputCoverage) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(outputColor, "outputColor");
this->nameExpression(outputCoverage, "outputCoverage");
SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
GrShaderFlags rtAdjustVisibility;
if (proc.willUseGeoShader()) {
rtAdjustVisibility = kGeometry_GrShaderFlag;
} else {
rtAdjustVisibility = kVertex_GrShaderFlag;
}
fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(
rtAdjustVisibility,
kFloat4_GrSLType,
SkSL::Compiler::RTADJUST_NAME);
const char* rtAdjustName =
this->uniformHandler()->getUniformCStr(fUniformHandles.fRTAdjustmentUni);
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name());
fFS.codeAppend(openBrace.c_str());
fVS.codeAppendf("// Primitive Processor %s\n", proc.name());
SkASSERT(!fGeometryProcessor);
fGeometryProcessor.reset(proc.createGLSLInstance(*this->shaderCaps()));
SkSTArray<4, SamplerHandle> texSamplers(proc.numTextureSamplers());
SkSTArray<2, TexelBufferHandle> texelBuffers(proc.numBuffers());
this->emitSamplers(proc, &texSamplers, &texelBuffers);
GrGLSLPrimitiveProcessor::FPCoordTransformHandler transformHandler(fPipeline,
&fTransformedCoordVars);
GrGLSLGeometryProcessor::EmitArgs args(&fVS,
proc.willUseGeoShader() ? &fGS : nullptr,
&fFS,
this->varyingHandler(),
this->uniformHandler(),
this->shaderCaps(),
proc,
outputColor->c_str(),
outputCoverage->c_str(),
rtAdjustName,
texSamplers.begin(),
texelBuffers.begin(),
&transformHandler);
fGeometryProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(proc);)
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) {
int transformedCoordVarsIdx = 0;
SkString** inOut = &color;
for (int i = 0; i < this->pipeline().numFragmentProcessors(); ++i) {
if (i == this->pipeline().numColorFragmentProcessors()) {
inOut = &coverage;
}
SkString output;
const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
output = this->emitAndInstallFragProc(fp, i, transformedCoordVarsIdx, **inOut, output);
GrFragmentProcessor::Iter iter(&fp);
while (const GrFragmentProcessor* fp = iter.next()) {
transformedCoordVarsIdx += fp->numCoordTransforms();
}
**inOut = output;
}
}
// TODO Processors cannot output zeros because an empty string is all 1s
// the fix is to allow effects to take the SkString directly
SkString GrGLSLProgramBuilder::emitAndInstallFragProc(const GrFragmentProcessor& fp,
int index,
int transformedCoordVarsIdx,
const SkString& input,
SkString output) {
SkASSERT(input.size());
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(&output, "output");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name());
fFS.codeAppend(openBrace.c_str());
GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance();
SkSTArray<4, SamplerHandle> textureSamplerArray(fp.numTextureSamplers());
SkSTArray<2, TexelBufferHandle> texelBufferArray(fp.numBuffers());
GrFragmentProcessor::Iter iter(&fp);
while (const GrFragmentProcessor* subFP = iter.next()) {
this->emitSamplers(*subFP, &textureSamplerArray, &texelBufferArray);
}
const GrShaderVar* coordVars = fTransformedCoordVars.begin() + transformedCoordVarsIdx;
GrGLSLFragmentProcessor::TransformedCoordVars coords(&fp, coordVars);
GrGLSLFragmentProcessor::TextureSamplers textureSamplers(&fp, textureSamplerArray.begin());
GrGLSLFragmentProcessor::TexelBuffers texelBuffers(&fp, texelBufferArray.begin());
GrGLSLFragmentProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->shaderCaps(),
fp,
output.c_str(),
input.c_str(),
coords,
textureSamplers,
texelBuffers);
fragProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(fp);)
fFragmentProcessors.push_back(fragProc);
fFS.codeAppend("}");
return output;
}
void GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn,
const SkString& coverageIn) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
SkASSERT(!fXferProcessor);
const GrXferProcessor& xp = fPipeline.getXferProcessor();
fXferProcessor.reset(xp.createGLSLInstance());
// Enable dual source secondary output if we have one
if (xp.hasSecondaryOutput()) {
fFS.enableSecondaryOutput();
}
if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) {
fFS.enableCustomOutput();
}
SkString openBrace;
openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
fFS.codeAppend(openBrace.c_str());
SamplerHandle dstTextureSamplerHandle;
GrSurfaceOrigin dstTextureOrigin = kTopLeft_GrSurfaceOrigin;
if (GrTexture* dstTexture = fPipeline.peekDstTexture()) {
// GrProcessor::TextureSampler sampler(dstTexture);
SkString name("DstTextureSampler");
dstTextureSamplerHandle =
this->emitSampler(dstTexture->texturePriv().samplerType(), dstTexture->config(),
"DstTextureSampler", kFragment_GrShaderFlag);
dstTextureOrigin = fPipeline.dstTextureProxy()->origin();
SkASSERT(kTextureExternalSampler_GrSLType != dstTexture->texturePriv().samplerType());
}
GrGLSLXferProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->shaderCaps(),
xp,
colorIn.size() ? colorIn.c_str() : "float4(1)",
coverageIn.size() ? coverageIn.c_str() : "float4(1)",
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
dstTextureSamplerHandle,
dstTextureOrigin);
fXferProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(xp);)
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitSamplers(
const GrResourceIOProcessor& processor,
SkTArray<SamplerHandle>* outTexSamplerHandles,
SkTArray<TexelBufferHandle>* outTexelBufferHandles) {
SkString name;
int numTextureSamplers = processor.numTextureSamplers();
for (int t = 0; t < numTextureSamplers; ++t) {
const GrResourceIOProcessor::TextureSampler& sampler = processor.textureSampler(t);
name.printf("TextureSampler_%d", outTexSamplerHandles->count());
GrSLType samplerType = sampler.peekTexture()->texturePriv().samplerType();
if (kTextureExternalSampler_GrSLType == samplerType) {
const char* externalFeatureString =
this->shaderCaps()->externalTextureExtensionString();
// We shouldn't ever create a GrGLTexture that requires external sampler type
SkASSERT(externalFeatureString);
this->addFeature(sampler.visibility(),
1 << GrGLSLShaderBuilder::kExternalTexture_GLSLPrivateFeature,
externalFeatureString);
}
outTexSamplerHandles->emplace_back(this->emitSampler(
samplerType, sampler.peekTexture()->config(), name.c_str(), sampler.visibility()));
}
if (int numBuffers = processor.numBuffers()) {
SkASSERT(this->shaderCaps()->texelBufferSupport());
GrShaderFlags texelBufferVisibility = kNone_GrShaderFlags;
for (int b = 0; b < numBuffers; ++b) {
const GrResourceIOProcessor::BufferAccess& access = processor.bufferAccess(b);
name.printf("TexelBuffer_%d", outTexelBufferHandles->count());
outTexelBufferHandles->emplace_back(
this->emitTexelBuffer(access.texelConfig(), name.c_str(), access.visibility()));
texelBufferVisibility |= access.visibility();
}
if (const char* extension = this->shaderCaps()->texelBufferExtensionString()) {
this->addFeature(texelBufferVisibility,
1 << GrGLSLShaderBuilder::kTexelBuffer_GLSLPrivateFeature,
extension);
}
}
}
void GrGLSLProgramBuilder::updateSamplerCounts(GrShaderFlags visibility) {
if (visibility & kVertex_GrShaderFlag) {
++fNumVertexSamplers;
}
if (visibility & kGeometry_GrShaderFlag) {
SkASSERT(this->primitiveProcessor().willUseGeoShader());
++fNumGeometrySamplers;
}
if (visibility & kFragment_GrShaderFlag) {
++fNumFragmentSamplers;
}
}
GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(GrSLType samplerType,
GrPixelConfig config,
const char* name,
GrShaderFlags visibility) {
this->updateSamplerCounts(visibility);
GrSLPrecision precision = GrSLSamplerPrecision(config);
GrSwizzle swizzle = this->shaderCaps()->configTextureSwizzle(config);
return this->uniformHandler()->addSampler(visibility, swizzle, samplerType, precision, name);
}
GrGLSLProgramBuilder::TexelBufferHandle GrGLSLProgramBuilder::emitTexelBuffer(
GrPixelConfig config, const char* name, GrShaderFlags visibility) {
this->updateSamplerCounts(visibility);
GrSLPrecision precision = GrSLSamplerPrecision(config);
return this->uniformHandler()->addTexelBuffer(visibility, precision, name);
}
void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) {
// Swizzle the fragment shader outputs if necessary.
GrSwizzle swizzle;
swizzle.setFromKey(this->desc()->header().fOutputSwizzle);
if (swizzle != GrSwizzle::RGBA()) {
fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(),
fFS.getPrimaryColorOutputName(),
swizzle.c_str());
if (hasSecondaryOutput) {
fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
swizzle.c_str());
}
}
}
bool GrGLSLProgramBuilder::checkSamplerCounts() {
const GrShaderCaps& shaderCaps = *this->shaderCaps();
if (fNumVertexSamplers > shaderCaps.maxVertexSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many vertex samplers\n");
return false;
}
if (fNumGeometrySamplers > shaderCaps.maxGeometrySamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many geometry samplers\n");
return false;
}
if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n");
return false;
}
// If the same sampler is used in two different shaders, it counts as two combined samplers.
int numCombinedSamplers = fNumVertexSamplers + fNumGeometrySamplers + fNumFragmentSamplers;
if (numCombinedSamplers > shaderCaps.maxCombinedSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many combined samplers\n");
return false;
}
return true;
}
#ifdef SK_DEBUG
void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) {
SkASSERT(fFS.usedProcessorFeatures() == gp.requiredFeatures());
}
void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
SkASSERT(fFS.usedProcessorFeatures() == xp.requiredFeatures());
SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor());
}
void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(fFS.usedProcessorFeatures() == fp.requiredFeatures());
}
#endif
void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) {
if ('\0' == prefix) {
*out = name;
} else {
out->printf("%c%s", prefix, name);
}
if (mangle) {
if (out->endsWith('_')) {
// Names containing "__" are reserved.
out->append("x");
}
out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str());
}
}
void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) {
// create var to hold stage result. If we already have a valid output name, just use that
// otherwise create a new mangled one. This name is only valid if we are reordering stages
// and have to tell stage exactly where to put its output.
SkString outName;
if (output->size()) {
outName = output->c_str();
} else {
this->nameVariable(&outName, '\0', baseName);
}
fFS.codeAppendf("half4 %s;", outName.c_str());
*output = outName;
}
void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
this->uniformHandler()->appendUniformDecls(visibility, out);
}
void GrGLSLProgramBuilder::addRTHeightUniform(const char* name) {
SkASSERT(!fUniformHandles.fRTHeightUni.isValid());
GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
fUniformHandles.fRTHeightUni =
uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag,
kHalf_GrSLType, kDefault_GrSLPrecision,
name, false, 0, nullptr);
}
void GrGLSLProgramBuilder::cleanupFragmentProcessors() {
for (int i = 0; i < fFragmentProcessors.count(); ++i) {
delete fFragmentProcessors[i];
}
}
void GrGLSLProgramBuilder::finalizeShaders() {
this->varyingHandler()->finalize();
fVS.finalize(kVertex_GrShaderFlag);
if (this->primitiveProcessor().willUseGeoShader()) {
SkASSERT(this->shaderCaps()->geometryShaderSupport());
fGS.finalize(kGeometry_GrShaderFlag);
}
fFS.finalize(kFragment_GrShaderFlag);
}
|