aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/effects/GrPorterDuffXferProcessor.cpp
blob: 7378874da92c7496cc2de949bdaed16cf0ec7759 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "effects/GrPorterDuffXferProcessor.h"

#include "GrBlend.h"
#include "GrCaps.h"
#include "GrPipeline.h"
#include "GrProcessor.h"
#include "GrProcOptInfo.h"
#include "GrTypes.h"
#include "GrXferProcessor.h"
#include "glsl/GrGLSLBlend.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLXferProcessor.h"
#include <utility>

/**
 * Wraps the shader outputs and HW blend state that comprise a Porter Duff blend mode with coverage.
 */
struct BlendFormula {
public:
    /**
     * Values the shader can write to primary and secondary outputs. These must all be modulated by
     * coverage to support mixed samples. The XP will ignore the multiplies when not using coverage.
     */
    enum OutputType {
        kNone_OutputType,        //<! 0
        kCoverage_OutputType,    //<! inputCoverage
        kModulate_OutputType,    //<! inputColor * inputCoverage
        kSAModulate_OutputType,  //<! inputColor.a * inputCoverage
        kISAModulate_OutputType, //<! (1 - inputColor.a) * inputCoverage
        kISCModulate_OutputType, //<! (1 - inputColor) * inputCoverage

        kLast_OutputType = kISCModulate_OutputType
    };

    enum Properties {
        kModifiesDst_Property              = 1,
        kUsesDstColor_Property             = 1 << 1,
        kUsesInputColor_Property           = 1 << 2,
        kCanTweakAlphaForCoverage_Property = 1 << 3,

        kLast_Property = kCanTweakAlphaForCoverage_Property
    };

    BlendFormula& operator =(const BlendFormula& other) {
        fData = other.fData;
        return *this;
    }

    bool operator ==(const BlendFormula& other) const {
        return fData == other.fData;
    }

    bool hasSecondaryOutput() const { return kNone_OutputType != fSecondaryOutputType; }
    bool modifiesDst() const { return SkToBool(fProps & kModifiesDst_Property); }
    bool usesDstColor() const { return SkToBool(fProps & kUsesDstColor_Property); }
    bool usesInputColor() const { return SkToBool(fProps & kUsesInputColor_Property); }
    bool canTweakAlphaForCoverage() const {
        return SkToBool(fProps & kCanTweakAlphaForCoverage_Property);
    }

    /**
     * Deduce the properties of a compile-time constant BlendFormula.
     */
    template<OutputType PrimaryOut, OutputType SecondaryOut,
             GrBlendEquation BlendEquation, GrBlendCoeff SrcCoeff, GrBlendCoeff DstCoeff>
    struct get_properties : std::integral_constant<Properties, static_cast<Properties>(

        (GR_BLEND_MODIFIES_DST(BlendEquation, SrcCoeff, DstCoeff) ?
            kModifiesDst_Property : 0) |

        (GR_BLEND_COEFFS_USE_DST_COLOR(SrcCoeff, DstCoeff) ?
            kUsesDstColor_Property : 0) |

        ((PrimaryOut >= kModulate_OutputType && GR_BLEND_COEFFS_USE_SRC_COLOR(SrcCoeff,DstCoeff)) ||
         (SecondaryOut >= kModulate_OutputType && GR_BLEND_COEFF_REFS_SRC2(DstCoeff)) ?
            kUsesInputColor_Property : 0) |  // We assert later that SrcCoeff doesn't ref src2.

        (kModulate_OutputType == PrimaryOut &&
         kNone_OutputType == SecondaryOut &&
         GR_BLEND_CAN_TWEAK_ALPHA_FOR_COVERAGE(BlendEquation, SrcCoeff, DstCoeff) ?
            kCanTweakAlphaForCoverage_Property : 0))> {

        // The provided formula should already be optimized.
        GR_STATIC_ASSERT((kNone_OutputType == PrimaryOut) ==
                         !GR_BLEND_COEFFS_USE_SRC_COLOR(SrcCoeff, DstCoeff));
        GR_STATIC_ASSERT(!GR_BLEND_COEFF_REFS_SRC2(SrcCoeff));
        GR_STATIC_ASSERT((kNone_OutputType == SecondaryOut) ==
                         !GR_BLEND_COEFF_REFS_SRC2(DstCoeff));
        GR_STATIC_ASSERT(PrimaryOut != SecondaryOut || kNone_OutputType == PrimaryOut);
        GR_STATIC_ASSERT(kNone_OutputType != PrimaryOut || kNone_OutputType == SecondaryOut);
    };

    union {
        struct {
            // We allot the enums one more bit than they require because MSVC seems to sign-extend
            // them when the top bit is set. (This is in violation of the C++03 standard 9.6/4)
            OutputType        fPrimaryOutputType    : 4;
            OutputType        fSecondaryOutputType  : 4;
            GrBlendEquation   fBlendEquation        : 6;
            GrBlendCoeff      fSrcCoeff             : 6;
            GrBlendCoeff      fDstCoeff             : 6;
            Properties        fProps                : 32 - (4 + 4 + 6 + 6 + 6);
        };
        uint32_t fData;
    };

    GR_STATIC_ASSERT(kLast_OutputType      < (1 << 3));
    GR_STATIC_ASSERT(kLast_GrBlendEquation < (1 << 5));
    GR_STATIC_ASSERT(kLast_GrBlendCoeff    < (1 << 5));
    GR_STATIC_ASSERT(kLast_Property        < (1 << 6));
};

GR_STATIC_ASSERT(4 == sizeof(BlendFormula));

GR_MAKE_BITFIELD_OPS(BlendFormula::Properties);

/**
 * Initialize a compile-time constant BlendFormula and automatically deduce fProps.
 */
#define INIT_BLEND_FORMULA(PRIMARY_OUT, SECONDARY_OUT, BLEND_EQUATION, SRC_COEFF, DST_COEFF) \
    {{{PRIMARY_OUT, \
       SECONDARY_OUT, \
       BLEND_EQUATION, SRC_COEFF, DST_COEFF, \
       BlendFormula::get_properties<PRIMARY_OUT, SECONDARY_OUT, \
                                    BLEND_EQUATION, SRC_COEFF, DST_COEFF>::value}}}

/**
 * When there is no coverage, or the blend mode can tweak alpha for coverage, we use the standard
 * Porter Duff formula.
 */
#define COEFF_FORMULA(SRC_COEFF, DST_COEFF) \
    INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \
                       BlendFormula::kNone_OutputType, \
                       kAdd_GrBlendEquation, SRC_COEFF, DST_COEFF)

/**
 * Basic coeff formula similar to COEFF_FORMULA but we will make the src f*Sa. This is used in
 * LCD dst-out.
 */
#define COEFF_FORMULA_SA_MODULATE(SRC_COEFF, DST_COEFF) \
    INIT_BLEND_FORMULA(BlendFormula::kSAModulate_OutputType, \
                       BlendFormula::kNone_OutputType, \
                       kAdd_GrBlendEquation, SRC_COEFF, DST_COEFF)

/**
 * When the coeffs are (Zero, Zero), we clear the dst. This formula has its own macro so we can set
 * the primary output type to none.
 */
#define DST_CLEAR_FORMULA \
    INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \
                       BlendFormula::kNone_OutputType, \
                       kAdd_GrBlendEquation, kZero_GrBlendCoeff, kZero_GrBlendCoeff)

/**
 * When the coeffs are (Zero, One), we don't write to the dst at all. This formula has its own macro
 * so we can set the primary output type to none.
 */
#define NO_DST_WRITE_FORMULA \
    INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \
                       BlendFormula::kNone_OutputType, \
                       kAdd_GrBlendEquation, kZero_GrBlendCoeff, kOne_GrBlendCoeff)

/**
 * When there is coverage, the equation with f=coverage is:
 *
 *   D' = f * (S * srcCoeff + D * dstCoeff) + (1-f) * D
 *
 * This can be rewritten as:
 *
 *   D' = f * S * srcCoeff + D * (1 - [f * (1 - dstCoeff)])
 *
 * To implement this formula, we output [f * (1 - dstCoeff)] for the secondary color and replace the
 * HW dst coeff with IS2C.
 *
 * Xfer modes: dst-atop (Sa!=1)
 */
#define COVERAGE_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, SRC_COEFF) \
    INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \
                       ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \
                       kAdd_GrBlendEquation, SRC_COEFF, kIS2C_GrBlendCoeff)

/**
 * When there is coverage and the src coeff is Zero, the equation with f=coverage becomes:
 *
 *   D' = f * D * dstCoeff + (1-f) * D
 *
 * This can be rewritten as:
 *
 *   D' = D - D * [f * (1 - dstCoeff)]
 *
 * To implement this formula, we output [f * (1 - dstCoeff)] for the primary color and use a reverse
 * subtract HW blend equation with coeffs of (DC, One).
 *
 * Xfer modes: clear, dst-out (Sa=1), dst-in (Sa!=1), modulate (Sc!=1)
 */
#define COVERAGE_SRC_COEFF_ZERO_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT) \
    INIT_BLEND_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \
                       BlendFormula::kNone_OutputType, \
                       kReverseSubtract_GrBlendEquation, kDC_GrBlendCoeff, kOne_GrBlendCoeff)

/**
 * When there is coverage and the dst coeff is Zero, the equation with f=coverage becomes:
 *
 *   D' = f * S * srcCoeff + (1-f) * D
 *
 * To implement this formula, we output [f] for the secondary color and replace the HW dst coeff
 * with IS2A. (Note that we can avoid dual source blending when Sa=1 by using ISA.)
 *
 * Xfer modes (Sa!=1): src, src-in, src-out
 */
#define COVERAGE_DST_COEFF_ZERO_FORMULA(SRC_COEFF) \
    INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \
                       BlendFormula::kCoverage_OutputType, \
                       kAdd_GrBlendEquation, SRC_COEFF, kIS2A_GrBlendCoeff)

/**
 * This table outlines the blend formulas we will use with each xfermode, with and without coverage,
 * with and without an opaque input color. Optimization properties are deduced at compile time so we
 * can make runtime decisions quickly. RGB coverage is not supported.
 */
static const BlendFormula gBlendTable[2][2][(int)SkBlendMode::kLastCoeffMode + 1] = {

                     /*>> No coverage, input color unknown <<*/ {{

    /* clear */      DST_CLEAR_FORMULA,
    /* src */        COEFF_FORMULA(   kOne_GrBlendCoeff,    kZero_GrBlendCoeff),
    /* dst */        NO_DST_WRITE_FORMULA,
    /* src-over */   COEFF_FORMULA(   kOne_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* dst-over */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* src-in */     COEFF_FORMULA(   kDA_GrBlendCoeff,     kZero_GrBlendCoeff),
    /* dst-in */     COEFF_FORMULA(   kZero_GrBlendCoeff,   kSA_GrBlendCoeff),
    /* src-out */    COEFF_FORMULA(   kIDA_GrBlendCoeff,    kZero_GrBlendCoeff),
    /* dst-out */    COEFF_FORMULA(   kZero_GrBlendCoeff,   kISA_GrBlendCoeff),
    /* src-atop */   COEFF_FORMULA(   kDA_GrBlendCoeff,     kISA_GrBlendCoeff),
    /* dst-atop */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kSA_GrBlendCoeff),
    /* xor */        COEFF_FORMULA(   kIDA_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* plus */       COEFF_FORMULA(   kOne_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* modulate */   COEFF_FORMULA(   kZero_GrBlendCoeff,   kSC_GrBlendCoeff),
    /* screen */     COEFF_FORMULA(   kOne_GrBlendCoeff,    kISC_GrBlendCoeff),

                     }, /*>> Has coverage, input color unknown <<*/ {

    /* clear */      COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType),
    /* src */        COVERAGE_DST_COEFF_ZERO_FORMULA(kOne_GrBlendCoeff),
    /* dst */        NO_DST_WRITE_FORMULA,
    /* src-over */   COEFF_FORMULA(   kOne_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* dst-over */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* src-in */     COVERAGE_DST_COEFF_ZERO_FORMULA(kDA_GrBlendCoeff),
    /* dst-in */     COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISAModulate_OutputType),
    /* src-out */    COVERAGE_DST_COEFF_ZERO_FORMULA(kIDA_GrBlendCoeff),
    /* dst-out */    COEFF_FORMULA(   kZero_GrBlendCoeff,   kISA_GrBlendCoeff),
    /* src-atop */   COEFF_FORMULA(   kDA_GrBlendCoeff,     kISA_GrBlendCoeff),
    /* dst-atop */   COVERAGE_FORMULA(BlendFormula::kISAModulate_OutputType, kIDA_GrBlendCoeff),
    /* xor */        COEFF_FORMULA(   kIDA_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* plus */       COEFF_FORMULA(   kOne_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* modulate */   COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_OutputType),
    /* screen */     COEFF_FORMULA(   kOne_GrBlendCoeff,    kISC_GrBlendCoeff),

                     }}, /*>> No coverage, input color opaque <<*/ {{

    /* clear */      DST_CLEAR_FORMULA,
    /* src */        COEFF_FORMULA(   kOne_GrBlendCoeff,    kZero_GrBlendCoeff),
    /* dst */        NO_DST_WRITE_FORMULA,
    /* src-over */   COEFF_FORMULA(   kOne_GrBlendCoeff,    kZero_GrBlendCoeff),
    /* dst-over */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* src-in */     COEFF_FORMULA(   kDA_GrBlendCoeff,     kZero_GrBlendCoeff),
    /* dst-in */     NO_DST_WRITE_FORMULA,
    /* src-out */    COEFF_FORMULA(   kIDA_GrBlendCoeff,    kZero_GrBlendCoeff),
    /* dst-out */    DST_CLEAR_FORMULA,
    /* src-atop */   COEFF_FORMULA(   kDA_GrBlendCoeff,     kZero_GrBlendCoeff),
    /* dst-atop */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* xor */        COEFF_FORMULA(   kIDA_GrBlendCoeff,    kZero_GrBlendCoeff),
    /* plus */       COEFF_FORMULA(   kOne_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* modulate */   COEFF_FORMULA(   kZero_GrBlendCoeff,   kSC_GrBlendCoeff),
    /* screen */     COEFF_FORMULA(   kOne_GrBlendCoeff,    kISC_GrBlendCoeff),

                     }, /*>> Has coverage, input color opaque <<*/ {

    /* clear */      COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType),
    /* src */        COEFF_FORMULA(   kOne_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* dst */        NO_DST_WRITE_FORMULA,
    /* src-over */   COEFF_FORMULA(   kOne_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* dst-over */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* src-in */     COEFF_FORMULA(   kDA_GrBlendCoeff,     kISA_GrBlendCoeff),
    /* dst-in */     NO_DST_WRITE_FORMULA,
    /* src-out */    COEFF_FORMULA(   kIDA_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* dst-out */    COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType),
    /* src-atop */   COEFF_FORMULA(   kDA_GrBlendCoeff,     kISA_GrBlendCoeff),
    /* dst-atop */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* xor */        COEFF_FORMULA(   kIDA_GrBlendCoeff,    kISA_GrBlendCoeff),
    /* plus */       COEFF_FORMULA(   kOne_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* modulate */   COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_OutputType),
    /* screen */     COEFF_FORMULA(   kOne_GrBlendCoeff,    kISC_GrBlendCoeff),
}}};

static const BlendFormula gLCDBlendTable[(int)SkBlendMode::kLastCoeffMode + 1] = {
    /* clear */      COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType),
    /* src */        COVERAGE_FORMULA(BlendFormula::kCoverage_OutputType, kOne_GrBlendCoeff),
    /* dst */        NO_DST_WRITE_FORMULA,
    /* src-over */   COVERAGE_FORMULA(BlendFormula::kSAModulate_OutputType, kOne_GrBlendCoeff),
    /* dst-over */   COEFF_FORMULA(   kIDA_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* src-in */     COVERAGE_FORMULA(BlendFormula::kCoverage_OutputType, kDA_GrBlendCoeff),
    /* dst-in */     COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISAModulate_OutputType),
    /* src-out */    COVERAGE_FORMULA(BlendFormula::kCoverage_OutputType, kIDA_GrBlendCoeff),
    /* dst-out */    COEFF_FORMULA_SA_MODULATE(   kZero_GrBlendCoeff,   kISC_GrBlendCoeff),
    /* src-atop */   COVERAGE_FORMULA(BlendFormula::kSAModulate_OutputType, kDA_GrBlendCoeff),
    /* dst-atop */   COVERAGE_FORMULA(BlendFormula::kISAModulate_OutputType, kIDA_GrBlendCoeff),
    /* xor */        COVERAGE_FORMULA(BlendFormula::kSAModulate_OutputType, kIDA_GrBlendCoeff),
    /* plus */       COEFF_FORMULA(   kOne_GrBlendCoeff,    kOne_GrBlendCoeff),
    /* modulate */   COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_OutputType),
    /* screen */     COEFF_FORMULA(   kOne_GrBlendCoeff,    kISC_GrBlendCoeff),
};

static BlendFormula get_blend_formula(bool isOpaque,
                                      bool hasCoverage,
                                      bool hasMixedSamples,
                                      SkBlendMode xfermode) {
    SkASSERT((unsigned)xfermode <= (unsigned)SkBlendMode::kLastCoeffMode);
    bool conflatesCoverage = hasCoverage || hasMixedSamples;
    return gBlendTable[isOpaque][conflatesCoverage][(int)xfermode];
}

static BlendFormula get_lcd_blend_formula(SkBlendMode xfermode) {
    SkASSERT((unsigned)xfermode <= (unsigned)SkBlendMode::kLastCoeffMode);

    return gLCDBlendTable[(int)xfermode];
}

///////////////////////////////////////////////////////////////////////////////

class PorterDuffXferProcessor : public GrXferProcessor {
public:
    PorterDuffXferProcessor(BlendFormula blendFormula) : fBlendFormula(blendFormula) {
        this->initClassID<PorterDuffXferProcessor>();
    }

    const char* name() const override { return "Porter Duff"; }

    GrGLSLXferProcessor* createGLSLInstance() const override;

    BlendFormula getBlendFormula() const { return fBlendFormula; }

private:
    GrXferProcessor::OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const override;

    void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;

    bool onHasSecondaryOutput() const override { return fBlendFormula.hasSecondaryOutput(); }

    void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override {
        blendInfo->fEquation = fBlendFormula.fBlendEquation;
        blendInfo->fSrcBlend = fBlendFormula.fSrcCoeff;
        blendInfo->fDstBlend = fBlendFormula.fDstCoeff;
        blendInfo->fWriteColor = fBlendFormula.modifiesDst();
    }

    bool onIsEqual(const GrXferProcessor& xpBase) const override {
        const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor>();
        return fBlendFormula == xp.fBlendFormula;
    }

    const BlendFormula fBlendFormula;

    typedef GrXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

static void append_color_output(const PorterDuffXferProcessor& xp,
                                GrGLSLXPFragmentBuilder* fragBuilder,
                                BlendFormula::OutputType outputType, const char* output,
                                const char* inColor, const char* inCoverage) {
    SkASSERT(inCoverage);
    SkASSERT(inColor);
    switch (outputType) {
        case BlendFormula::kNone_OutputType:
            fragBuilder->codeAppendf("%s = vec4(0.0);", output);
            break;
        case BlendFormula::kCoverage_OutputType:
            // We can have a coverage formula while not reading coverage if there are mixed samples.
            fragBuilder->codeAppendf("%s = %s;", output, inCoverage);
            break;
        case BlendFormula::kModulate_OutputType:
            fragBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCoverage);
            break;
        case BlendFormula::kSAModulate_OutputType:
            fragBuilder->codeAppendf("%s = %s.a * %s;", output, inColor, inCoverage);
            break;
        case BlendFormula::kISAModulate_OutputType:
            fragBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColor, inCoverage);
            break;
        case BlendFormula::kISCModulate_OutputType:
            fragBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", output, inColor, inCoverage);
            break;
        default:
            SkFAIL("Unsupported output type.");
            break;
    }
}

class GLPorterDuffXferProcessor : public GrGLSLXferProcessor {
public:
    static void GenKey(const GrProcessor& processor, GrProcessorKeyBuilder* b) {
        const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcessor>();
        b->add32(xp.getBlendFormula().fPrimaryOutputType |
                 (xp.getBlendFormula().fSecondaryOutputType << 3));
        GR_STATIC_ASSERT(BlendFormula::kLast_OutputType < 8);
    }

private:
    void emitOutputsForBlendState(const EmitArgs& args) override {
        const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcessor>();
        GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;

        BlendFormula blendFormula = xp.getBlendFormula();
        if (blendFormula.hasSecondaryOutput()) {
            append_color_output(xp, fragBuilder, blendFormula.fSecondaryOutputType,
                                args.fOutputSecondary, args.fInputColor, args.fInputCoverage);
        }
        append_color_output(xp, fragBuilder, blendFormula.fPrimaryOutputType,
                            args.fOutputPrimary, args.fInputColor, args.fInputCoverage);
    }

    void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}

    typedef GrGLSLXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

void PorterDuffXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps&,
                                                    GrProcessorKeyBuilder* b) const {
    GLPorterDuffXferProcessor::GenKey(*this, b);
}

GrGLSLXferProcessor* PorterDuffXferProcessor::createGLSLInstance() const {
    return new GLPorterDuffXferProcessor;
}

GrXferProcessor::OptFlags PorterDuffXferProcessor::onGetOptimizations(
        const FragmentProcessorAnalysis& analysis) const {
    GrXferProcessor::OptFlags optFlags = GrXferProcessor::kNone_OptFlags;
    if (!fBlendFormula.modifiesDst()) {
        optFlags |= (GrXferProcessor::kIgnoreColor_OptFlag |
                     GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag);
    } else {
        if (!fBlendFormula.usesInputColor()) {
            optFlags |= GrXferProcessor::kIgnoreColor_OptFlag;
        }
        if (analysis.isCompatibleWithCoverageAsAlpha() &&
            fBlendFormula.canTweakAlphaForCoverage()) {
            optFlags |= GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag;
        }
    }
    return optFlags;
}

///////////////////////////////////////////////////////////////////////////////

class ShaderPDXferProcessor : public GrXferProcessor {
public:
    ShaderPDXferProcessor(const DstTexture* dstTexture,
                          bool hasMixedSamples,
                          SkBlendMode xfermode)
        : INHERITED(dstTexture, true, hasMixedSamples)
        , fXfermode(xfermode) {
        this->initClassID<ShaderPDXferProcessor>();
    }

    const char* name() const override { return "Porter Duff Shader"; }

    GrGLSLXferProcessor* createGLSLInstance() const override;

    SkBlendMode getXfermode() const { return fXfermode; }

private:
    GrXferProcessor::OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const override {
        return kNone_OptFlags;
    }

    void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;

    bool onIsEqual(const GrXferProcessor& xpBase) const override {
        const ShaderPDXferProcessor& xp = xpBase.cast<ShaderPDXferProcessor>();
        return fXfermode == xp.fXfermode;
    }

    const SkBlendMode fXfermode;

    typedef GrXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

class GLShaderPDXferProcessor : public GrGLSLXferProcessor {
public:
    static void GenKey(const GrProcessor& processor, GrProcessorKeyBuilder* b) {
        const ShaderPDXferProcessor& xp = processor.cast<ShaderPDXferProcessor>();
        b->add32((int)xp.getXfermode());
    }

private:
    void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder* fragBuilder,
                                 GrGLSLUniformHandler* uniformHandler,
                                 const char* srcColor,
                                 const char* srcCoverage,
                                 const char* dstColor,
                                 const char* outColor,
                                 const char* outColorSecondary,
                                 const GrXferProcessor& proc) override {
        const ShaderPDXferProcessor& xp = proc.cast<ShaderPDXferProcessor>();

        GrGLSLBlend::AppendMode(fragBuilder, srcColor, dstColor, outColor, xp.getXfermode());

        // Apply coverage.
        INHERITED::DefaultCoverageModulation(fragBuilder, srcCoverage, dstColor, outColor,
                                             outColorSecondary, xp);
    }

    void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}

    typedef GrGLSLXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

void ShaderPDXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps&,
                                                  GrProcessorKeyBuilder* b) const {
    GLShaderPDXferProcessor::GenKey(*this, b);
}

GrGLSLXferProcessor* ShaderPDXferProcessor::createGLSLInstance() const {
    return new GLShaderPDXferProcessor;
}

///////////////////////////////////////////////////////////////////////////////

class PDLCDXferProcessor : public GrXferProcessor {
public:
    static GrXferProcessor* Create(SkBlendMode xfermode, const FragmentProcessorAnalysis& analysis);

    ~PDLCDXferProcessor() override;

    const char* name() const override { return "Porter Duff LCD"; }

    GrGLSLXferProcessor* createGLSLInstance() const override;

    uint8_t alpha() const { return fAlpha; }

private:
    PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha);

    GrXferProcessor::OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const override;

    void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;

    void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override {
        blendInfo->fSrcBlend = kConstC_GrBlendCoeff;
        blendInfo->fDstBlend = kISC_GrBlendCoeff;
        blendInfo->fBlendConstant = fBlendConstant;
    }

    bool onIsEqual(const GrXferProcessor& xpBase) const override {
        const PDLCDXferProcessor& xp = xpBase.cast<PDLCDXferProcessor>();
        if (fBlendConstant != xp.fBlendConstant || fAlpha != xp.fAlpha) {
            return false;
        }
        return true;
    }

    GrColor fBlendConstant;
    uint8_t fAlpha;

    typedef GrXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

class GLPDLCDXferProcessor : public GrGLSLXferProcessor {
public:
    GLPDLCDXferProcessor(const GrProcessor&) : fLastAlpha(SK_MaxU32) {}

    virtual ~GLPDLCDXferProcessor() {}

    static void GenKey(const GrProcessor& processor, const GrShaderCaps& caps,
                       GrProcessorKeyBuilder* b) {}

private:
    void emitOutputsForBlendState(const EmitArgs& args) override {
        const char* alpha;
        fAlphaUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType,
                                                         kDefault_GrSLPrecision, "alpha", &alpha);
        GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
        // We want to force our primary output to be alpha * Coverage, where alpha is the alpha
        // value of the src color. We know that there are no color stages (or we wouldn't have
        // created this xp) and the r,g, and b channels of the op's input color are baked into the
        // blend constant.
        SkASSERT(args.fInputCoverage);
        fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, alpha, args.fInputCoverage);
    }

    void onSetData(const GrGLSLProgramDataManager& pdm, const GrXferProcessor& xp) override {
        uint32_t alpha = SkToU32(xp.cast<PDLCDXferProcessor>().alpha());
        if (fLastAlpha != alpha) {
            pdm.set1f(fAlphaUniform, alpha / 255.f);
            fLastAlpha = alpha;
        }
    }

    GrGLSLUniformHandler::UniformHandle fAlphaUniform;
    uint32_t fLastAlpha;
    typedef GrGLSLXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

PDLCDXferProcessor::PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha)
    : fBlendConstant(blendConstant)
    , fAlpha(alpha) {
    this->initClassID<PDLCDXferProcessor>();
}

GrXferProcessor* PDLCDXferProcessor::Create(SkBlendMode xfermode,
                                            const FragmentProcessorAnalysis& analysis) {
    if (SkBlendMode::kSrcOver != xfermode) {
        return nullptr;
    }
    GrColor blendConstant;
    if (!analysis.hasKnownOutputColor(&blendConstant)) {
        return nullptr;
    }
    blendConstant = GrUnpremulColor(blendConstant);
    uint8_t alpha = GrColorUnpackA(blendConstant);
    blendConstant |= (0xff << GrColor_SHIFT_A);
    return new PDLCDXferProcessor(blendConstant, alpha);
}

PDLCDXferProcessor::~PDLCDXferProcessor() {
}

void PDLCDXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
                                               GrProcessorKeyBuilder* b) const {
    GLPDLCDXferProcessor::GenKey(*this, caps, b);
}

GrGLSLXferProcessor* PDLCDXferProcessor::createGLSLInstance() const {
    return new GLPDLCDXferProcessor(*this);
}

GrXferProcessor::OptFlags PDLCDXferProcessor::onGetOptimizations(
        const FragmentProcessorAnalysis&) const {
    return GrXferProcessor::kIgnoreColor_OptFlag;
}

///////////////////////////////////////////////////////////////////////////////

constexpr GrPorterDuffXPFactory::GrPorterDuffXPFactory(SkBlendMode xfermode)
        : fBlendMode(xfermode) {}

const GrXPFactory* GrPorterDuffXPFactory::Get(SkBlendMode blendMode) {
    SkASSERT((unsigned)blendMode <= (unsigned)SkBlendMode::kLastCoeffMode);

    // If these objects are constructed as static constexpr by cl.exe (2015 SP2) the vtables are
    // null.
#ifdef SK_BUILD_FOR_WIN
#define _CONSTEXPR_
#else
#define _CONSTEXPR_ constexpr
#endif
    static _CONSTEXPR_ const GrPorterDuffXPFactory gClearPDXPF(SkBlendMode::kClear);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcPDXPF(SkBlendMode::kSrc);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gDstPDXPF(SkBlendMode::kDst);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcOverPDXPF(SkBlendMode::kSrcOver);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gDstOverPDXPF(SkBlendMode::kDstOver);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcInPDXPF(SkBlendMode::kSrcIn);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gDstInPDXPF(SkBlendMode::kDstIn);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcOutPDXPF(SkBlendMode::kSrcOut);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gDstOutPDXPF(SkBlendMode::kDstOut);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcATopPDXPF(SkBlendMode::kSrcATop);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gDstATopPDXPF(SkBlendMode::kDstATop);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gXorPDXPF(SkBlendMode::kXor);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gPlusPDXPF(SkBlendMode::kPlus);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gModulatePDXPF(SkBlendMode::kModulate);
    static _CONSTEXPR_ const GrPorterDuffXPFactory gScreenPDXPF(SkBlendMode::kScreen);
#undef _CONSTEXPR_

    switch (blendMode) {
        case SkBlendMode::kClear:
            return &gClearPDXPF;
        case SkBlendMode::kSrc:
            return &gSrcPDXPF;
        case SkBlendMode::kDst:
            return &gDstPDXPF;
        case SkBlendMode::kSrcOver:
            return &gSrcOverPDXPF;
        case SkBlendMode::kDstOver:
            return &gDstOverPDXPF;
        case SkBlendMode::kSrcIn:
            return &gSrcInPDXPF;
        case SkBlendMode::kDstIn:
            return &gDstInPDXPF;
        case SkBlendMode::kSrcOut:
            return &gSrcOutPDXPF;
        case SkBlendMode::kDstOut:
            return &gDstOutPDXPF;
        case SkBlendMode::kSrcATop:
            return &gSrcATopPDXPF;
        case SkBlendMode::kDstATop:
            return &gDstATopPDXPF;
        case SkBlendMode::kXor:
            return &gXorPDXPF;
        case SkBlendMode::kPlus:
            return &gPlusPDXPF;
        case SkBlendMode::kModulate:
            return &gModulatePDXPF;
        case SkBlendMode::kScreen:
            return &gScreenPDXPF;
        default:
            SkFAIL("Unexpected blend mode.");
            return nullptr;
    }
}

GrXferProcessor* GrPorterDuffXPFactory::onCreateXferProcessor(
        const GrCaps& caps,
        const FragmentProcessorAnalysis& analysis,
        bool hasMixedSamples,
        const DstTexture* dstTexture) const {
    if (analysis.usesPLSDstRead()) {
        return new ShaderPDXferProcessor(dstTexture, hasMixedSamples, fBlendMode);
    }
    BlendFormula blendFormula;
    if (analysis.hasLCDCoverage()) {
        if (SkBlendMode::kSrcOver == fBlendMode && analysis.hasKnownOutputColor() &&
            !caps.shaderCaps()->dualSourceBlendingSupport() &&
            !caps.shaderCaps()->dstReadInShaderSupport()) {
            // If we don't have dual source blending or in shader dst reads, we fall back to this
            // trick for rendering SrcOver LCD text instead of doing a dst copy.
            SkASSERT(!dstTexture || !dstTexture->texture());
            return PDLCDXferProcessor::Create(fBlendMode, analysis);
        }
        blendFormula = get_lcd_blend_formula(fBlendMode);
    } else {
        blendFormula = get_blend_formula(analysis.isOutputColorOpaque(), analysis.hasCoverage(),
                                         hasMixedSamples, fBlendMode);
    }

    if (blendFormula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport()) {
        return new ShaderPDXferProcessor(dstTexture, hasMixedSamples, fBlendMode);
    }

    SkASSERT(!dstTexture || !dstTexture->texture());
    return new PorterDuffXferProcessor(blendFormula);
}

bool GrPorterDuffXPFactory::willReadsDst(const FragmentProcessorAnalysis& analysis) const {
    BlendFormula colorFormula = gBlendTable[analysis.isOutputColorOpaque()][0][(int)fBlendMode];
    SkASSERT(kAdd_GrBlendEquation == colorFormula.fBlendEquation);
    return (colorFormula.usesDstColor() || analysis.hasCoverage());
}

bool GrPorterDuffXPFactory::onWillReadDstInShader(const GrCaps& caps,
                                                  const FragmentProcessorAnalysis& analysis) const {
    if (caps.shaderCaps()->dualSourceBlendingSupport()) {
        return false;
    }

    // When we have four channel coverage we always need to read the dst in order to correctly
    // blend. The one exception is when we are using srcover mode and we know the input color into
    // the XP.
    if (analysis.hasLCDCoverage()) {
        if (SkBlendMode::kSrcOver == fBlendMode && analysis.hasKnownOutputColor() &&
            !caps.shaderCaps()->dstReadInShaderSupport()) {
            return false;
        }
        return get_lcd_blend_formula(fBlendMode).hasSecondaryOutput();
    }

    // We fallback on the shader XP when the blend formula would use dual source blending but we
    // don't have support for it.
    static const bool kHasMixedSamples = false;
    SkASSERT(!caps.usesMixedSamples()); // We never use mixed samples without dual source blending.
    auto formula = get_blend_formula(analysis.isOutputColorOpaque(), analysis.hasCoverage(),
                                     kHasMixedSamples, fBlendMode);
    return formula.hasSecondaryOutput();
}

GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory);

#if GR_TEST_UTILS
const GrXPFactory* GrPorterDuffXPFactory::TestGet(GrProcessorTestData* d) {
    SkBlendMode mode = SkBlendMode(d->fRandom->nextULessThan((int)SkBlendMode::kLastCoeffMode));
    return GrPorterDuffXPFactory::Get(mode);
}
#endif

void GrPorterDuffXPFactory::TestGetXPOutputTypes(const GrXferProcessor* xp,
                                                 int* outPrimary,
                                                 int* outSecondary) {
    if (!!strcmp(xp->name(), "Porter Duff")) {
        *outPrimary = *outSecondary = -1;
        return;
    }
    BlendFormula blendFormula = static_cast<const PorterDuffXferProcessor*>(xp)->getBlendFormula();
    *outPrimary = blendFormula.fPrimaryOutputType;
    *outSecondary = blendFormula.fSecondaryOutputType;
}

////////////////////////////////////////////////////////////////////////////////////////////////
// SrcOver Global functions
////////////////////////////////////////////////////////////////////////////////////////////////
const GrXferProcessor& GrPorterDuffXPFactory::SimpleSrcOverXP() {
    static BlendFormula gSrcOverBlendFormula = COEFF_FORMULA(kOne_GrBlendCoeff,
                                                             kISA_GrBlendCoeff);
    static PorterDuffXferProcessor gSrcOverXP(gSrcOverBlendFormula);
    return gSrcOverXP;
}

GrXferProcessor* GrPorterDuffXPFactory::CreateSrcOverXferProcessor(
        const GrCaps& caps,
        const FragmentProcessorAnalysis& analysis,
        bool hasMixedSamples,
        const GrXferProcessor::DstTexture* dstTexture) {
    if (analysis.usesPLSDstRead()) {
        return new ShaderPDXferProcessor(dstTexture, hasMixedSamples, SkBlendMode::kSrcOver);
    }

    // We want to not make an xfer processor if possible. Thus for the simple case where we are not
    // doing lcd blending we will just use our global SimpleSrcOverXP. This slightly differs from
    // the general case where we convert a src-over blend that has solid coverage and an opaque
    // color to src-mode, which allows disabling of blending.
    if (!analysis.hasLCDCoverage()) {
        // We return nullptr here, which our caller interprets as meaning "use SimpleSrcOverXP".
        // We don't simply return the address of that XP here because our caller would have to unref
        // it and since it is a global object and GrProgramElement's ref-cnting system is not thread
        // safe.
        return nullptr;
    }

    if (analysis.hasKnownOutputColor() && !caps.shaderCaps()->dualSourceBlendingSupport() &&
        !caps.shaderCaps()->dstReadInShaderSupport()) {
        // If we don't have dual source blending or in shader dst reads, we fall
        // back to this trick for rendering SrcOver LCD text instead of doing a
        // dst copy.
        SkASSERT(!dstTexture || !dstTexture->texture());
        return PDLCDXferProcessor::Create(SkBlendMode::kSrcOver, analysis);
    }

    BlendFormula blendFormula;
    blendFormula = get_lcd_blend_formula(SkBlendMode::kSrcOver);
    if (blendFormula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport()) {
        return new ShaderPDXferProcessor(dstTexture, hasMixedSamples, SkBlendMode::kSrcOver);
    }

    SkASSERT(!dstTexture || !dstTexture->texture());
    return new PorterDuffXferProcessor(blendFormula);
}

sk_sp<GrXferProcessor> GrPorterDuffXPFactory::CreateNoCoverageXP(SkBlendMode blendmode) {
    BlendFormula formula = get_blend_formula(false, false, false, blendmode);
    return sk_make_sp<PorterDuffXferProcessor>(formula);
}

bool GrPorterDuffXPFactory::WillSrcOverReadDst(const FragmentProcessorAnalysis& analysis) {
    return analysis.hasCoverage() || !analysis.isOutputColorOpaque();
}

bool GrPorterDuffXPFactory::IsSrcOverPreCoverageBlendedColorConstant(
        const GrProcOptInfo& colorInput, GrColor* color) {
    if (!colorInput.isOpaque()) {
        return false;
    }
    return colorInput.hasKnownOutputColor(color);
}

bool GrPorterDuffXPFactory::WillSrcOverNeedDstTexture(const GrCaps& caps,
                                                      const FragmentProcessorAnalysis& analysis) {
    if (caps.shaderCaps()->dstReadInShaderSupport() ||
        caps.shaderCaps()->dualSourceBlendingSupport()) {
        return false;
    }

    // When we have four channel coverage we always need to read the dst in order to correctly
    // blend. The one exception is when we are using srcover mode and we know the input color
    // into the XP.
    if (analysis.hasLCDCoverage()) {
        if (analysis.hasKnownOutputColor() && !caps.shaderCaps()->dstReadInShaderSupport()) {
            return false;
        }
        auto formula = get_lcd_blend_formula(SkBlendMode::kSrcOver);
        return formula.hasSecondaryOutput();
    }

    // We fallback on the shader XP when the blend formula would use dual source blending but we
    // don't have support for it.
    static const bool kHasMixedSamples = false;
    bool isOpaque = analysis.isOutputColorOpaque();
    bool hasCoverage = analysis.hasCoverage();
    SkASSERT(!caps.usesMixedSamples()); // We never use mixed samples without dual source blending.
    auto formula =
            get_blend_formula(isOpaque, hasCoverage, kHasMixedSamples, SkBlendMode::kSrcOver);
    return formula.hasSecondaryOutput();
}