1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* This file was autogenerated from GrConfigConversionEffect.fp; do not modify.
*/
#ifndef GrConfigConversionEffect_DEFINED
#define GrConfigConversionEffect_DEFINED
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrClip.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
#include "GrRenderTargetContext.h"
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
class GrConfigConversionEffect : public GrFragmentProcessor {
public:
static bool TestForPreservingPMConversions(GrContext* context) {
static constexpr int kSize = 256;
static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig;
SkAutoTMalloc<uint32_t> data(kSize * kSize * 3);
uint32_t* srcData = data.get();
uint32_t* firstRead = data.get() + kSize * kSize;
uint32_t* secondRead = data.get() + 2 * kSize * kSize;
// Fill with every possible premultiplied A, color channel value. There will be 256-y
// duplicate values in row y. We set r, g, and b to the same value since they are handled
// identically.
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x < kSize; ++x) {
uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize * y + x]);
color[3] = y;
color[2] = SkTMin(x, y);
color[1] = SkTMin(x, y);
color[0] = SkTMin(x, y);
}
}
const SkImageInfo ii =
SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<GrRenderTargetContext> readRTC(context->makeDeferredRenderTargetContext(
SkBackingFit::kExact, kSize, kSize, kConfig, nullptr));
sk_sp<GrRenderTargetContext> tempRTC(context->makeDeferredRenderTargetContext(
SkBackingFit::kExact, kSize, kSize, kConfig, nullptr));
if (!readRTC || !readRTC->asTextureProxy() || !tempRTC) {
return false;
}
GrSurfaceDesc desc;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
desc.fWidth = kSize;
desc.fHeight = kSize;
desc.fConfig = kConfig;
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
sk_sp<GrTextureProxy> dataProxy = proxyProvider->createTextureProxy(desc, SkBudgeted::kYes,
data, 0);
if (!dataProxy) {
return false;
}
static const SkRect kRect = SkRect::MakeIWH(kSize, kSize);
// We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw
// from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data.
// We then verify that two reads produced the same values.
GrPaint paint1;
GrPaint paint2;
GrPaint paint3;
std::unique_ptr<GrFragmentProcessor> pmToUPM(
new GrConfigConversionEffect(PMConversion::kToUnpremul));
std::unique_ptr<GrFragmentProcessor> upmToPM(
new GrConfigConversionEffect(PMConversion::kToPremul));
paint1.addColorTextureProcessor(dataProxy, SkMatrix::I());
paint1.addColorFragmentProcessor(pmToUPM->clone());
paint1.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) {
return false;
}
paint2.addColorTextureProcessor(readRTC->asTextureProxyRef(), SkMatrix::I());
paint2.addColorFragmentProcessor(std::move(upmToPM));
paint2.setPorterDuffXPFactory(SkBlendMode::kSrc);
tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
paint3.addColorTextureProcessor(tempRTC->asTextureProxyRef(), SkMatrix::I());
paint3.addColorFragmentProcessor(std::move(pmToUPM));
paint3.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) {
return false;
}
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x <= y; ++x) {
if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) {
return false;
}
}
}
return true;
}
PMConversion pmConversion() const { return fPmConversion; }
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
PMConversion pmConversion) {
if (!fp) {
return nullptr;
}
std::unique_ptr<GrFragmentProcessor> ccFP(new GrConfigConversionEffect(pmConversion));
std::unique_ptr<GrFragmentProcessor> fpPipeline[] = {std::move(fp), std::move(ccFP)};
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
GrConfigConversionEffect(const GrConfigConversionEffect& src);
std::unique_ptr<GrFragmentProcessor> clone() const override;
const char* name() const override { return "ConfigConversionEffect"; }
private:
GrConfigConversionEffect(PMConversion pmConversion)
: INHERITED(kGrConfigConversionEffect_ClassID, kNone_OptimizationFlags)
, fPmConversion(pmConversion) {}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
PMConversion fPmConversion;
typedef GrFragmentProcessor INHERITED;
};
#endif
#endif
|