aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrSoftwarePathRenderer.cpp
blob: 421dd6b11c5e4c86a23d3d3c523ca4f77f27e50c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrSoftwarePathRenderer.h"
#include "GrAuditTrail.h"
#include "GrClip.h"
#include "GrContextPriv.h"
#include "GrGpuResourcePriv.h"
#include "GrOpFlushState.h"
#include "GrOpList.h"
#include "GrPrepareCallback.h"
#include "GrResourceProvider.h"
#include "GrSWMaskHelper.h"
#include "SkMakeUnique.h"
#include "SkSemaphore.h"
#include "SkTaskGroup.h"
#include "SkTraceEvent.h"
#include "ops/GrDrawOp.h"
#include "ops/GrRectOpFactory.h"

////////////////////////////////////////////////////////////////////////////////
GrPathRenderer::CanDrawPath
GrSoftwarePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    // Pass on any style that applies. The caller will apply the style if a suitable renderer is
    // not found and try again with the new GrShape.
    if (!args.fShape->style().applies() && SkToBool(fResourceProvider) &&
        (args.fAAType == GrAAType::kCoverage || args.fAAType == GrAAType::kNone)) {
        // This is the fallback renderer for when a path is too complicated for the GPU ones.
        return CanDrawPath::kAsBackup;
    }
    return CanDrawPath::kNo;
}

////////////////////////////////////////////////////////////////////////////////
static bool get_unclipped_shape_dev_bounds(const GrShape& shape, const SkMatrix& matrix,
                                           SkIRect* devBounds) {
    SkRect shapeBounds = shape.styledBounds();
    if (shapeBounds.isEmpty()) {
        return false;
    }
    SkRect shapeDevBounds;
    matrix.mapRect(&shapeDevBounds, shapeBounds);
    // Even though these are "unclipped" bounds we still clip to the int32_t range.
    // This is the largest int32_t that is representable exactly as a float. The next 63 larger ints
    // would round down to this value when cast to a float, but who really cares.
    // INT32_MIN is exactly representable.
    static constexpr int32_t kMaxInt = 2147483520;
    if (!shapeDevBounds.intersect(SkRect::MakeLTRB(INT32_MIN, INT32_MIN, kMaxInt, kMaxInt))) {
        return false;
    }
    shapeDevBounds.roundOut(devBounds);
    return true;
}

// Gets the shape bounds, the clip bounds, and the intersection (if any). Returns false if there
// is no intersection.
static bool get_shape_and_clip_bounds(int width, int height,
                                      const GrClip& clip,
                                      const GrShape& shape,
                                      const SkMatrix& matrix,
                                      SkIRect* unclippedDevShapeBounds,
                                      SkIRect* clippedDevShapeBounds,
                                      SkIRect* devClipBounds) {
    // compute bounds as intersection of rt size, clip, and path
    clip.getConservativeBounds(width, height, devClipBounds);

    if (!get_unclipped_shape_dev_bounds(shape, matrix, unclippedDevShapeBounds)) {
        *unclippedDevShapeBounds = SkIRect::EmptyIRect();
        *clippedDevShapeBounds = SkIRect::EmptyIRect();
        return false;
    }
    if (!clippedDevShapeBounds->intersect(*devClipBounds, *unclippedDevShapeBounds)) {
        *clippedDevShapeBounds = SkIRect::EmptyIRect();
        return false;
    }
    return true;
}

////////////////////////////////////////////////////////////////////////////////

void GrSoftwarePathRenderer::DrawNonAARect(GrRenderTargetContext* renderTargetContext,
                                           GrPaint&& paint,
                                           const GrUserStencilSettings& userStencilSettings,
                                           const GrClip& clip,
                                           const SkMatrix& viewMatrix,
                                           const SkRect& rect,
                                           const SkMatrix& localMatrix) {
    renderTargetContext->addDrawOp(clip,
                                   GrRectOpFactory::MakeNonAAFillWithLocalMatrix(
                                           std::move(paint), viewMatrix, localMatrix, rect,
                                           GrAAType::kNone, &userStencilSettings));
}

void GrSoftwarePathRenderer::DrawAroundInvPath(GrRenderTargetContext* renderTargetContext,
                                               GrPaint&& paint,
                                               const GrUserStencilSettings& userStencilSettings,
                                               const GrClip& clip,
                                               const SkMatrix& viewMatrix,
                                               const SkIRect& devClipBounds,
                                               const SkIRect& devPathBounds) {
    SkMatrix invert;
    if (!viewMatrix.invert(&invert)) {
        return;
    }

    SkRect rect;
    if (devClipBounds.fTop < devPathBounds.fTop) {
        rect.iset(devClipBounds.fLeft, devClipBounds.fTop,
                  devClipBounds.fRight, devPathBounds.fTop);
        DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip,
                      SkMatrix::I(), rect, invert);
    }
    if (devClipBounds.fLeft < devPathBounds.fLeft) {
        rect.iset(devClipBounds.fLeft, devPathBounds.fTop,
                  devPathBounds.fLeft, devPathBounds.fBottom);
        DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip,
                      SkMatrix::I(), rect, invert);
    }
    if (devClipBounds.fRight > devPathBounds.fRight) {
        rect.iset(devPathBounds.fRight, devPathBounds.fTop,
                  devClipBounds.fRight, devPathBounds.fBottom);
        DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip,
                      SkMatrix::I(), rect, invert);
    }
    if (devClipBounds.fBottom > devPathBounds.fBottom) {
        rect.iset(devClipBounds.fLeft, devPathBounds.fBottom,
                  devClipBounds.fRight, devClipBounds.fBottom);
        DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip,
                      SkMatrix::I(), rect, invert);
    }
}

void GrSoftwarePathRenderer::DrawToTargetWithShapeMask(
        sk_sp<GrTextureProxy> proxy,
        GrRenderTargetContext* renderTargetContext,
        GrPaint&& paint,
        const GrUserStencilSettings& userStencilSettings,
        const GrClip& clip,
        const SkMatrix& viewMatrix,
        const SkIPoint& textureOriginInDeviceSpace,
        const SkIRect& deviceSpaceRectToDraw) {
    SkMatrix invert;
    if (!viewMatrix.invert(&invert)) {
        return;
    }

    SkRect dstRect = SkRect::Make(deviceSpaceRectToDraw);

    // We use device coords to compute the texture coordinates. We take the device coords and apply
    // a translation so that the top-left of the device bounds maps to 0,0, and then a scaling
    // matrix to normalized coords.
    SkMatrix maskMatrix = SkMatrix::MakeTrans(SkIntToScalar(-textureOriginInDeviceSpace.fX),
                                              SkIntToScalar(-textureOriginInDeviceSpace.fY));
    maskMatrix.preConcat(viewMatrix);
    paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(
            std::move(proxy), nullptr, maskMatrix, GrSamplerState::Filter::kNearest));
    DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip, SkMatrix::I(),
                  dstRect, invert);
}

static sk_sp<GrTextureProxy> make_deferred_mask_texture_proxy(GrContext* context, SkBackingFit fit,
                                                              int width, int height) {
    GrSurfaceDesc desc;
    desc.fOrigin = kTopLeft_GrSurfaceOrigin;
    desc.fWidth = width;
    desc.fHeight = height;
    desc.fConfig = kAlpha_8_GrPixelConfig;
    return GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc, fit, SkBudgeted::kYes);
}

namespace {

/**
 * Payload class for use with GrMaskUploaderPrepareCallback. The software path renderer only draws
 * a single path into the mask texture. This stores all of the information needed by the worker
 * thread's call to drawShape (see below, in onDrawPath).
 */
class SoftwarePathData {
public:
    SoftwarePathData(const SkIRect& maskBounds, const SkMatrix& viewMatrix, const GrShape& shape,
                     GrAA aa)
            : fMaskBounds(maskBounds)
            , fViewMatrix(viewMatrix)
            , fShape(shape)
            , fAA(aa) {}

    const SkIRect& getMaskBounds() const { return fMaskBounds; }
    const SkMatrix* getViewMatrix() const { return &fViewMatrix; }
    const GrShape& getShape() const { return fShape; }
    GrAA getAA() const { return fAA; }

private:
    SkIRect fMaskBounds;
    SkMatrix fViewMatrix;
    GrShape fShape;
    GrAA fAA;
};

}

////////////////////////////////////////////////////////////////////////////////
// return true on success; false on failure
bool GrSoftwarePathRenderer::onDrawPath(const DrawPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
                              "GrSoftwarePathRenderer::onDrawPath");
    if (!fResourceProvider) {
        return false;
    }

    // We really need to know if the shape will be inverse filled or not
    bool inverseFilled = false;
    SkTLazy<GrShape> tmpShape;
    SkASSERT(!args.fShape->style().applies());
    // If the path is hairline, ignore inverse fill.
    inverseFilled = args.fShape->inverseFilled() &&
                    !IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr);

    SkIRect unclippedDevShapeBounds, clippedDevShapeBounds, devClipBounds;
    // To prevent overloading the cache with entries during animations we limit the cache of masks
    // to cases where the matrix preserves axis alignment.
    bool useCache = fAllowCaching && !inverseFilled && args.fViewMatrix->preservesAxisAlignment() &&
                    args.fShape->hasUnstyledKey() && GrAAType::kCoverage == args.fAAType;

    if (!get_shape_and_clip_bounds(args.fRenderTargetContext->width(),
                                   args.fRenderTargetContext->height(),
                                   *args.fClip, *args.fShape,
                                   *args.fViewMatrix, &unclippedDevShapeBounds,
                                   &clippedDevShapeBounds,
                                   &devClipBounds)) {
        if (inverseFilled) {
            DrawAroundInvPath(args.fRenderTargetContext, std::move(args.fPaint),
                              *args.fUserStencilSettings, *args.fClip, *args.fViewMatrix,
                              devClipBounds, unclippedDevShapeBounds);
        }
        return true;
    }

    const SkIRect* boundsForMask = &clippedDevShapeBounds;
    if (useCache) {
        // Use the cache only if >50% of the path is visible.
        int unclippedWidth = unclippedDevShapeBounds.width();
        int unclippedHeight = unclippedDevShapeBounds.height();
        int unclippedArea = unclippedWidth * unclippedHeight;
        int clippedArea = clippedDevShapeBounds.width() * clippedDevShapeBounds.height();
        int maxTextureSize = args.fRenderTargetContext->caps()->maxTextureSize();
        if (unclippedArea > 2 * clippedArea || unclippedWidth > maxTextureSize ||
            unclippedHeight > maxTextureSize) {
            useCache = false;
        } else {
            boundsForMask = &unclippedDevShapeBounds;
        }
    }

    GrUniqueKey maskKey;
    if (useCache) {
        // We require the upper left 2x2 of the matrix to match exactly for a cache hit.
        SkScalar sx = args.fViewMatrix->get(SkMatrix::kMScaleX);
        SkScalar sy = args.fViewMatrix->get(SkMatrix::kMScaleY);
        SkScalar kx = args.fViewMatrix->get(SkMatrix::kMSkewX);
        SkScalar ky = args.fViewMatrix->get(SkMatrix::kMSkewY);
        static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
        // Fractional translate does not affect caching on Android. This is done for better cache
        // hit ratio and speed, but it is matching HWUI behavior, which doesn't consider the matrix
        // at all when caching paths.
        GrUniqueKey::Builder builder(&maskKey, kDomain, 4 + args.fShape->unstyledKeySize());
#else
        SkScalar tx = args.fViewMatrix->get(SkMatrix::kMTransX);
        SkScalar ty = args.fViewMatrix->get(SkMatrix::kMTransY);
        // Allow 8 bits each in x and y of subpixel positioning.
        SkFixed fracX = SkScalarToFixed(SkScalarFraction(tx)) & 0x0000FF00;
        SkFixed fracY = SkScalarToFixed(SkScalarFraction(ty)) & 0x0000FF00;
        GrUniqueKey::Builder builder(&maskKey, kDomain, 5 + args.fShape->unstyledKeySize());
#endif
        builder[0] = SkFloat2Bits(sx);
        builder[1] = SkFloat2Bits(sy);
        builder[2] = SkFloat2Bits(kx);
        builder[3] = SkFloat2Bits(ky);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
        args.fShape->writeUnstyledKey(&builder[4]);
#else
        builder[4] = fracX | (fracY >> 8);
        args.fShape->writeUnstyledKey(&builder[5]);
#endif
    }

    sk_sp<GrTextureProxy> proxy;
    if (useCache) {
        proxy = fResourceProvider->findProxyByUniqueKey(maskKey, kTopLeft_GrSurfaceOrigin);
    }
    if (!proxy) {
        SkBackingFit fit = useCache ? SkBackingFit::kExact : SkBackingFit::kApprox;
        GrAA aa = GrAAType::kCoverage == args.fAAType ? GrAA::kYes : GrAA::kNo;

        SkTaskGroup* taskGroup = args.fContext->contextPriv().getTaskGroup();
        if (taskGroup) {
            proxy = make_deferred_mask_texture_proxy(args.fContext, fit,
                                                     boundsForMask->width(),
                                                     boundsForMask->height());
            if (!proxy) {
                return false;
            }

            auto uploader = skstd::make_unique<GrMaskUploaderPrepareCallback<SoftwarePathData>>(
                    proxy, *boundsForMask, *args.fViewMatrix, *args.fShape, aa);
            GrMaskUploaderPrepareCallback<SoftwarePathData>* uploaderRaw = uploader.get();

            auto drawAndUploadMask = [uploaderRaw] {
                TRACE_EVENT0("skia", "Threaded SW Mask Render");
                GrSWMaskHelper helper(uploaderRaw->getPixels());
                if (helper.init(uploaderRaw->data().getMaskBounds())) {
                    helper.drawShape(uploaderRaw->data().getShape(),
                                     *uploaderRaw->data().getViewMatrix(),
                                     SkRegion::kReplace_Op, uploaderRaw->data().getAA(), 0xFF);
                } else {
                    SkDEBUGFAIL("Unable to allocate SW mask.");
                }
                uploaderRaw->getSemaphore()->signal();
            };
            taskGroup->add(std::move(drawAndUploadMask));
            args.fRenderTargetContext->getOpList()->addPrepareCallback(std::move(uploader));
        } else {
            GrSWMaskHelper helper;
            if (!helper.init(*boundsForMask)) {
                return false;
            }
            helper.drawShape(*args.fShape, *args.fViewMatrix, SkRegion::kReplace_Op, aa, 0xFF);
            proxy = helper.toTextureProxy(args.fContext, fit);
        }

        if (!proxy) {
            return false;
        }
        if (useCache) {
            SkASSERT(proxy->origin() == kTopLeft_GrSurfaceOrigin);
            fResourceProvider->assignUniqueKeyToProxy(maskKey, proxy.get());
        }
    }
    if (inverseFilled) {
        DrawAroundInvPath(args.fRenderTargetContext, GrPaint::Clone(args.fPaint),
                          *args.fUserStencilSettings, *args.fClip, *args.fViewMatrix, devClipBounds,
                          unclippedDevShapeBounds);
    }
    DrawToTargetWithShapeMask(
            std::move(proxy), args.fRenderTargetContext, std::move(args.fPaint),
            *args.fUserStencilSettings, *args.fClip, *args.fViewMatrix,
            SkIPoint{boundsForMask->fLeft, boundsForMask->fTop}, *boundsForMask);

    return true;
}