1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrResourceCache_DEFINED
#define GrResourceCache_DEFINED
#include "GrTypes.h"
#include "GrTHashCache.h"
class GrResource;
// return true if a<b, or false if b<a
//
#define RET_IF_LT_OR_GT(a, b) \
do { \
if ((a) < (b)) { \
return true; \
} \
if ((b) < (a)) { \
return false; \
} \
} while (0)
/**
* Helper class for GrResourceCache, the Key is used to identify src data for
* a resource. It is identified by 2 32bit data fields which can hold any
* data (uninterpreted by the cache) and a width/height.
*/
class GrResourceKey {
public:
enum {
kHashBits = 7,
kHashCount = 1 << kHashBits,
kHashMask = kHashCount - 1
};
enum TypeBits {
// resource types
kTexture_TypeBit = 0x01,
kStencilBuffer_TypeBit = 0x02,
// Derived classes may add additional bits
kDummy_TypeBit,
kLastPublic_TypeBit = kDummy_TypeBit-1,
};
GrResourceKey(uint32_t p0, uint32_t p1, uint32_t p2, uint32_t p3) {
fP[0] = p0;
fP[1] = p1;
fP[2] = p2;
fP[3] = p3;
this->computeHashIndex();
}
GrResourceKey(uint32_t v[4]) {
memcpy(fP, v, 4 * sizeof(uint32_t));
this->computeHashIndex();
}
GrResourceKey(const GrResourceKey& src) {
memcpy(fP, src.fP, 4 * sizeof(uint32_t));
#if GR_DEBUG
this->computeHashIndex();
GrAssert(fHashIndex == src.fHashIndex);
#endif
fHashIndex = src.fHashIndex;
}
//!< returns hash value [0..kHashMask] for the key
int hashIndex() const { return fHashIndex; }
friend bool operator==(const GrResourceKey& a, const GrResourceKey& b) {
GR_DEBUGASSERT(-1 != a.fHashIndex && -1 != b.fHashIndex);
return 0 == memcmp(a.fP, b.fP, 4 * sizeof(uint32_t));
}
friend bool operator!=(const GrResourceKey& a, const GrResourceKey& b) {
GR_DEBUGASSERT(-1 != a.fHashIndex && -1 != b.fHashIndex);
return !(a == b);
}
friend bool operator<(const GrResourceKey& a, const GrResourceKey& b) {
RET_IF_LT_OR_GT(a.fP[0], b.fP[0]);
RET_IF_LT_OR_GT(a.fP[1], b.fP[1]);
RET_IF_LT_OR_GT(a.fP[2], b.fP[2]);
return a.fP[3] < b.fP[3];
}
uint32_t getValue32(int i) const {
GrAssert(i >=0 && i < 4);
return fP[i];
}
private:
static uint32_t rol(uint32_t x) {
return (x >> 24) | (x << 8);
}
static uint32_t ror(uint32_t x) {
return (x >> 8) | (x << 24);
}
static uint32_t rohalf(uint32_t x) {
return (x >> 16) | (x << 16);
}
void computeHashIndex() {
uint32_t hash = fP[0] ^ rol(fP[1]) ^ ror(fP[2]) ^ rohalf(fP[3]);
// this way to mix and reduce hash to its index may have to change
// depending on how many bits we allocate to the index
hash ^= hash >> 16;
hash ^= hash >> 8;
fHashIndex = hash & kHashMask;
}
uint32_t fP[4];
// this is computed from the fP... fields
int fHashIndex;
friend class GrContext;
};
///////////////////////////////////////////////////////////////////////////////
class GrResourceEntry {
public:
GrResource* resource() const { return fResource; }
const GrResourceKey& key() const { return fKey; }
#if GR_DEBUG
GrResourceEntry* next() const { return fNext; }
GrResourceEntry* prev() const { return fPrev; }
#endif
#if GR_DEBUG
void validate() const;
#else
void validate() const {}
#endif
private:
GrResourceEntry(const GrResourceKey& key, GrResource* resource);
~GrResourceEntry();
bool isLocked() const { return fLockCount != 0; }
void lock() { ++fLockCount; }
void unlock() {
GrAssert(fLockCount > 0);
--fLockCount;
}
GrResourceKey fKey;
GrResource* fResource;
// track if we're in use, used when we need to purge
// we only purge unlocked entries
int fLockCount;
// we're a dlinklist
GrResourceEntry* fPrev;
GrResourceEntry* fNext;
friend class GrResourceCache;
};
///////////////////////////////////////////////////////////////////////////////
#include "GrTHashCache.h"
/**
* Cache of GrResource objects.
*
* These have a corresponding GrResourceKey, built from 128bits identifying the
* resource.
*
* The cache stores the entries in a double-linked list, which is its LRU.
* When an entry is "locked" (i.e. given to the caller), it is moved to the
* head of the list. If/when we must purge some of the entries, we walk the
* list backwards from the tail, since those are the least recently used.
*
* For fast searches, we maintain a sorted array (based on the GrResourceKey)
* which we can bsearch. When a new entry is added, it is inserted into this
* array.
*
* For even faster searches, a hash is computed from the Key. If there is
* a collision between two keys with the same hash, we fall back on the
* bsearch, and update the hash to reflect the most recent Key requested.
*/
class GrResourceCache {
public:
GrResourceCache(int maxCount, size_t maxBytes);
~GrResourceCache();
/**
* Return the current resource cache limits.
*
* @param maxResource If non-null, returns maximum number of resources
* that can be held in the cache.
* @param maxBytes If non-null, returns maximum number of bytes of
* gpu memory that can be held in the cache.
*/
void getLimits(int* maxResources, size_t* maxBytes) const;
/**
* Specify the resource cache limits. If the current cache exceeds either
* of these, it will be purged (LRU) to keep the cache within these limits.
*
* @param maxResources The maximum number of resources that can be held in
* the cache.
* @param maxBytes The maximum number of bytes of resource memory that
* can be held in the cache.
*/
void setLimits(int maxResource, size_t maxResourceBytes);
/**
* Returns the number of bytes consumed by cached resources.
*/
size_t getCachedResourceBytes() const { return fEntryBytes; }
/**
* Controls whether locks should be nestable or not.
*/
enum LockType {
kNested_LockType,
kSingle_LockType,
};
/**
* Search for an entry with the same Key. If found, "lock" it and return it.
* If not found, return null.
*/
GrResourceEntry* findAndLock(const GrResourceKey&, LockType style);
/**
* Create a new entry, based on the specified key and resource, and return
* its "locked" entry.
*
* Ownership of the resource is transferred to the Entry, which will unref()
* it when we are purged or deleted.
*/
GrResourceEntry* createAndLock(const GrResourceKey&, GrResource*);
/**
* Determines if the cache contains an entry matching a key. If a matching
* entry exists but was detached then it will not be found.
*/
bool hasKey(const GrResourceKey& key) const;
/**
* Detach removes an entry from the cache. This prevents the entry from
* being found by a subsequent findAndLock() until it is reattached. The
* entry still counts against the cache's budget and should be reattached
* when exclusive access is no longer needed.
*/
void detach(GrResourceEntry*);
/**
* Reattaches a resource to the cache and unlocks it. Allows it to be found
* by a subsequent findAndLock or be purged (provided its lock count is
* now 0.)
*/
void reattachAndUnlock(GrResourceEntry*);
/**
* When done with an entry, call unlock(entry) on it, which returns it to
* a purgable state.
*/
void unlock(GrResourceEntry*);
void removeAll();
#if GR_DEBUG
void validate() const;
#else
void validate() const {}
#endif
private:
void internalDetach(GrResourceEntry*, bool);
void attachToHead(GrResourceEntry*, bool);
void purgeAsNeeded();
class Key;
GrTHashTable<GrResourceEntry, Key, 8> fCache;
// manage the dlink list
GrResourceEntry* fHead;
GrResourceEntry* fTail;
// our budget, used in purgeAsNeeded()
int fMaxCount;
size_t fMaxBytes;
// our current stats, related to our budget
int fEntryCount;
int fUnlockedEntryCount;
size_t fEntryBytes;
int fClientDetachedCount;
size_t fClientDetachedBytes;
// prevents recursive purging
bool fPurging;
};
///////////////////////////////////////////////////////////////////////////////
#if GR_DEBUG
class GrAutoResourceCacheValidate {
public:
GrAutoResourceCacheValidate(GrResourceCache* cache) : fCache(cache) {
cache->validate();
}
~GrAutoResourceCacheValidate() {
fCache->validate();
}
private:
GrResourceCache* fCache;
};
#else
class GrAutoResourceCacheValidate {
public:
GrAutoResourceCacheValidate(GrResourceCache*) {}
};
#endif
#endif
|