aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/GrCircleBlurFragmentProcessor.cpp
blob: afab4b48913186154ae2396883687b6e025952c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCircleBlurFragmentProcessor.h"

#if SK_SUPPORT_GPU

#include "GrContext.h"
#include "GrInvariantOutput.h"
#include "GrTextureProvider.h"

#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"

class GrGLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
public:
    void emitCode(EmitArgs&) override;

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;

private:
    GrGLSLProgramDataManager::UniformHandle fDataUniform;

    typedef GrGLSLFragmentProcessor INHERITED;
};

void GrGLCircleBlurFragmentProcessor::emitCode(EmitArgs& args) {

    const char *dataName;

    // The data is formatted as:
    // x,y  - the center of the circle
    // z    - the distance at which the intensity starts falling off (e.g., the start of the table)
    // w    - the inverse of the profile texture size
    fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
                                                    kVec4f_GrSLType,
                                                    kDefault_GrSLPrecision,
                                                    "data",
                                                    &dataName);

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    const char *fragmentPos = fragBuilder->fragmentPosition();

    if (args.fInputColor) {
        fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
    } else {
        fragBuilder->codeAppendf("vec4 src=vec4(1);");
    }

    // We just want to compute "length(vec) - %s.z + 0.5) * %s.w" but need to rearrange
    // for precision
    fragBuilder->codeAppendf("vec2 vec = vec2( (%s.x - %s.x) * %s.w , (%s.y - %s.y) * %s.w );",
                             fragmentPos, dataName, dataName,
                             fragmentPos, dataName, dataName);
    fragBuilder->codeAppendf("float dist = length(vec) + ( 0.5 - %s.z ) * %s.w;",
                             dataName, dataName);

    fragBuilder->codeAppendf("float intensity = ");
    fragBuilder->appendTextureLookup(args.fSamplers[0], "vec2(dist, 0.5)");
    fragBuilder->codeAppend(".a;");

    fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
}

void GrGLCircleBlurFragmentProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
                                                const GrProcessor& proc) {
    const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>();
    const SkRect& circle = cbfp.circle();

    // The data is formatted as:
    // x,y  - the center of the circle
    // z    - the distance at which the intensity starts falling off (e.g., the start of the table)
    // w    - the inverse of the profile texture size
    pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.offset(),
                1.0f / cbfp.profileSize());
}

///////////////////////////////////////////////////////////////////////////////

GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle,
                                                             float sigma,
                                                             float offset,
                                                             GrTexture* blurProfile)
    : fCircle(circle)
    , fSigma(sigma)
    , fOffset(offset)
    , fBlurProfileAccess(blurProfile, GrTextureParams::kBilerp_FilterMode) {
    this->initClassID<GrCircleBlurFragmentProcessor>();
    this->addTextureAccess(&fBlurProfileAccess);
    this->setWillReadFragmentPosition();
}

GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
    return new GrGLCircleBlurFragmentProcessor;
}

void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
                                                          GrProcessorKeyBuilder* b) const {
    GrGLCircleBlurFragmentProcessor::GenKey(*this, caps, b);
}

void GrCircleBlurFragmentProcessor::onComputeInvariantOutput(GrInvariantOutput* inout) const {
    inout->mulByUnknownSingleComponent();
}

// Evaluate an AA circle function centered at the origin with 'radius' at (x,y)
static inline float disk(float x, float y, float radius) {
    float distSq = x*x + y*y;
    if (distSq <= (radius-0.5f)*(radius-0.5f)) {
        return 1.0f;
    } else if (distSq >= (radius+0.5f)*(radius+0.5f)) {
        return 0.0f;
    } else {
        float ramp = radius + 0.5f - sqrtf(distSq);
        SkASSERT(ramp >= 0.0f && ramp <= 1.0f);
        return ramp;
    }
}

// Create the top half of an even-sized Gaussian kernel
static void make_half_kernel(float* kernel, int kernelWH, float sigma) {
    SkASSERT(!(kernelWH & 1));

    const float kernelOff = (kernelWH-1)/2.0f;

    float b = 1.0f / (2.0f * sigma * sigma);
    // omit the scale term since we're just going to renormalize

    float tot = 0.0f;
    for (int y = 0; y < kernelWH/2; ++y) {
        for (int x = 0; x < kernelWH/2; ++x) {
            // TODO: use a cheap approximation of the 2D Guassian?
            float x2 = (x-kernelOff) * (x-kernelOff);
            float y2 = (y-kernelOff) * (y-kernelOff);
            // The kernel is symmetric so only compute it once for both sides
            kernel[y*kernelWH+(kernelWH-x-1)] = kernel[y*kernelWH+x] = expf(-(x2 + y2) * b);
            tot += 2.0f * kernel[y*kernelWH+x];
        }
    }
    // Still normalize the half kernel to 1.0 (rather than 0.5) so we don't
    // have to scale by 2.0 after convolution.
    for (int y = 0; y < kernelWH/2; ++y) {
        for (int x = 0; x < kernelWH; ++x) {
            kernel[y*kernelWH+x] /= tot;
        }
    }
}

// Apply the half-kernel at 't' away from the center of the circle
static uint8_t eval_at(float t, float halfWidth, float* halfKernel, int kernelWH) {
    SkASSERT(!(kernelWH & 1));

    const float kernelOff = (kernelWH-1)/2.0f;

    float acc = 0;

    for (int y = 0; y < kernelWH/2; ++y) {
        if (kernelOff-y > halfWidth+0.5f) {
            // All disk() samples in this row will be 0.0f
            continue;
        }

        for (int x = 0; x < kernelWH; ++x) {
            float image = disk(t - kernelOff + x, -kernelOff + y, halfWidth);
            float kernel = halfKernel[y*kernelWH+x];
            acc += kernel * image;
        }
    }

    return SkUnitScalarClampToByte(acc);
}

static inline void compute_profile_offset_and_size(float halfWH, float sigma,
                                                   float* offset, int* size) {

    if (3*sigma <= halfWH) {
        // The circle is bigger than the Gaussian. In this case we know the interior of the
        // blurred circle is solid.
        *offset = halfWH - 3 * sigma; // This location maps to 0.5f in the weights texture.
                                      // It should always be 255.
        *size = SkScalarCeilToInt(6*sigma);
    } else {
        // The Gaussian is bigger than the circle.
        *offset = 0.0f;
        *size = SkScalarCeilToInt(halfWH + 3*sigma);
    }
}

static uint8_t* create_profile(float halfWH, float sigma) {

    int kernelWH = SkScalarCeilToInt(6.0f*sigma);
    kernelWH = (kernelWH + 1) & ~1; // make it the next even number up

    SkAutoTArray<float> halfKernel(kernelWH*kernelWH/2);

    make_half_kernel(halfKernel.get(), kernelWH, sigma);

    float offset;
    int numSteps;

    compute_profile_offset_and_size(halfWH, sigma, &offset, &numSteps);

    uint8_t* weights = new uint8_t[numSteps];
    for (int i = 0; i < numSteps - 1; ++i) {
        weights[i] = eval_at(offset+i, halfWH, halfKernel.get(), kernelWH);
    }
    // Ensure the tail of the Gaussian goes to zero.
    weights[numSteps-1] = 0;

    return weights;
}

GrTexture* GrCircleBlurFragmentProcessor::CreateCircleBlurProfileTexture(
                                                                GrTextureProvider* textureProvider,
                                                                const SkRect& circle,
                                                                float sigma,
                                                                float* offset) {
    float halfWH = circle.width() / 2.0f;

    int size;
    compute_profile_offset_and_size(halfWH, sigma, offset, &size);

    GrSurfaceDesc texDesc;
    texDesc.fWidth = size;
    texDesc.fHeight = 1;
    texDesc.fConfig = kAlpha_8_GrPixelConfig;

    static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
    GrUniqueKey key;
    GrUniqueKey::Builder builder(&key, kDomain, 2);
    // The profile curve varies with both the sigma of the Gaussian and the size of the
    // disk. Quantizing to 16.16 should be close enough though.
    builder[0] = SkScalarToFixed(sigma);
    builder[1] = SkScalarToFixed(halfWH);
    builder.finish();

    GrTexture *blurProfile = textureProvider->findAndRefTextureByUniqueKey(key);

    if (!blurProfile) {
        SkAutoTDeleteArray<uint8_t> profile(create_profile(halfWH, sigma));

        blurProfile = textureProvider->createTexture(texDesc, SkBudgeted::kYes, profile.get(), 0);
        if (blurProfile) {
            textureProvider->assignUniqueKeyToTexture(key, blurProfile);
        }
    }

    return blurProfile;
}

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);

const GrFragmentProcessor* GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) {
    SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f);
    SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
    SkRect circle = SkRect::MakeWH(wh, wh);
    return GrCircleBlurFragmentProcessor::Create(d->fContext->textureProvider(), circle, sigma);
}

#endif