1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkXfermode.h"
#include "SkXfermode_proccoeff.h"
#include "SkColorPriv.h"
#include "SkMathPriv.h"
#include "SkOnce.h"
#include "SkOpts.h"
#include "SkRasterPipeline.h"
#include "SkReadBuffer.h"
#include "SkString.h"
#include "SkWriteBuffer.h"
#include "SkPM4f.h"
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "effects/GrCustomXfermode.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrXfermodeFragmentProcessor.h"
#endif
#define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b)
static inline unsigned saturated_add(unsigned a, unsigned b) {
SkASSERT(a <= 255);
SkASSERT(b <= 255);
unsigned sum = a + b;
if (sum > 255) {
sum = 255;
}
return sum;
}
static inline int clamp_signed_byte(int n) {
if (n < 0) {
n = 0;
} else if (n > 255) {
n = 255;
}
return n;
}
static inline int clamp_div255round(int prod) {
if (prod <= 0) {
return 0;
} else if (prod >= 255*255) {
return 255;
} else {
return SkDiv255Round(prod);
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkNx.h"
static Sk4f alpha(const Sk4f& color) { return Sk4f(color[3]); }
static Sk4f inv_alpha(const Sk4f& color) { return Sk4f(1 - color[3]); }
static Sk4f pin_1(const Sk4f& value) { return Sk4f::Min(value, Sk4f(1)); }
static Sk4f color_alpha(const Sk4f& color, float newAlpha) {
return Sk4f(color[0], color[1], color[2], newAlpha);
}
static Sk4f color_alpha(const Sk4f& color, const Sk4f& newAlpha) {
return color_alpha(color, newAlpha[3]);
}
static Sk4f set_argb(float a, float r, float g, float b) {
if (0 == SkPM4f::R) {
return Sk4f(r, g, b, a);
} else {
return Sk4f(b, g, r, a);
}
}
static Sk4f clear_4f(const Sk4f& s, const Sk4f& d) { return Sk4f(0); }
static Sk4f src_4f(const Sk4f& s, const Sk4f& d) { return s; }
static Sk4f dst_4f(const Sk4f& s, const Sk4f& d) { return d; }
static Sk4f srcover_4f(const Sk4f& s, const Sk4f& d) { return s + inv_alpha(s) * d; }
static Sk4f dstover_4f(const Sk4f& s, const Sk4f& d) { return d + inv_alpha(d) * s; }
static Sk4f srcin_4f(const Sk4f& s, const Sk4f& d) { return s * alpha(d); }
static Sk4f dstin_4f(const Sk4f& s, const Sk4f& d) { return d * alpha(s); }
static Sk4f srcout_4f(const Sk4f& s, const Sk4f& d) { return s * inv_alpha(d); }
static Sk4f dstout_4f(const Sk4f& s, const Sk4f& d) { return d * inv_alpha(s); }
static Sk4f srcatop_4f(const Sk4f& s, const Sk4f& d) { return s * alpha(d) + d * inv_alpha(s); }
static Sk4f dstatop_4f(const Sk4f& s, const Sk4f& d) { return d * alpha(s) + s * inv_alpha(d); }
static Sk4f xor_4f(const Sk4f& s, const Sk4f& d) { return s * inv_alpha(d) + d * inv_alpha(s);}
static Sk4f plus_4f(const Sk4f& s, const Sk4f& d) { return pin_1(s + d); }
static Sk4f modulate_4f(const Sk4f& s, const Sk4f& d) { return s * d; }
static Sk4f screen_4f(const Sk4f& s, const Sk4f& d) { return s + d - s * d; }
static Sk4f multiply_4f(const Sk4f& s, const Sk4f& d) {
return s * inv_alpha(d) + d * inv_alpha(s) + s * d;
}
static Sk4f overlay_4f(const Sk4f& s, const Sk4f& d) {
Sk4f sa = alpha(s);
Sk4f da = alpha(d);
Sk4f two = Sk4f(2);
Sk4f rc = (two * d <= da).thenElse(two * s * d,
sa * da - two * (da - d) * (sa - s));
return pin_1(s + d - s * da + color_alpha(rc - d * sa, 0));
}
static Sk4f hardlight_4f(const Sk4f& s, const Sk4f& d) {
return overlay_4f(d, s);
}
static Sk4f darken_4f(const Sk4f& s, const Sk4f& d) {
Sk4f sa = alpha(s);
Sk4f da = alpha(d);
return s + d - Sk4f::Max(s * da, d * sa);
}
static Sk4f lighten_4f(const Sk4f& s, const Sk4f& d) {
Sk4f sa = alpha(s);
Sk4f da = alpha(d);
return s + d - Sk4f::Min(s * da, d * sa);
}
static Sk4f colordodge_4f(const Sk4f& s, const Sk4f& d) {
Sk4f sa = alpha(s);
Sk4f da = alpha(d);
Sk4f isa = Sk4f(1) - sa;
Sk4f ida = Sk4f(1) - da;
Sk4f srcover = s + d * isa;
Sk4f dstover = d + s * ida;
Sk4f otherwise = sa * Sk4f::Min(da, (d * sa) / (sa - s)) + s * ida + d * isa;
// Order matters here, preferring d==0 over s==sa.
auto colors = (d == Sk4f(0)).thenElse(dstover,
(s == sa).thenElse(srcover,
otherwise));
return color_alpha(colors, srcover);
}
static Sk4f colorburn_4f(const Sk4f& s, const Sk4f& d) {
Sk4f sa = alpha(s);
Sk4f da = alpha(d);
Sk4f isa = Sk4f(1) - sa;
Sk4f ida = Sk4f(1) - da;
Sk4f srcover = s + d * isa;
Sk4f dstover = d + s * ida;
Sk4f otherwise = sa * (da - Sk4f::Min(da, (da - d) * sa / s)) + s * ida + d * isa;
// Order matters here, preferring d==da over s==0.
auto colors = (d == da).thenElse(dstover,
(s == Sk4f(0)).thenElse(srcover,
otherwise));
return color_alpha(colors, srcover);
}
static Sk4f softlight_4f(const Sk4f& s, const Sk4f& d) {
Sk4f sa = alpha(s);
Sk4f da = alpha(d);
Sk4f isa = Sk4f(1) - sa;
Sk4f ida = Sk4f(1) - da;
// Some common terms.
Sk4f m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0));
Sk4f s2 = Sk4f(2) * s;
Sk4f m4 = Sk4f(4) * m;
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
Sk4f darkSrc = d * (sa + (s2 - sa) * (Sk4f(1) - m)); // Used in case 1.
Sk4f darkDst = (m4 * m4 + m4) * (m - Sk4f(1)) + Sk4f(7) * m; // Used in case 2.
Sk4f liteDst = m.sqrt() - m; // Used in case 3.
Sk4f liteSrc = d * sa + da * (s2 - sa) * (Sk4f(4) * d <= da).thenElse(darkDst,
liteDst); // Case 2 or 3?
return color_alpha(s * ida + d * isa + (s2 <= sa).thenElse(darkSrc, liteSrc), // Case 1 or 2/3?
s + d * isa);
}
static Sk4f difference_4f(const Sk4f& s, const Sk4f& d) {
Sk4f min = Sk4f::Min(s * alpha(d), d * alpha(s));
return s + d - min - color_alpha(min, 0);
}
static Sk4f exclusion_4f(const Sk4f& s, const Sk4f& d) {
Sk4f product = s * d;
return s + d - product - color_alpha(product, 0);
}
////////////////////////////////////////////////////
// The CSS compositing spec introduces the following formulas:
// (See https://dvcs.w3.org/hg/FXTF/rawfile/tip/compositing/index.html#blendingnonseparable)
// SkComputeLuminance is similar to this formula but it uses the new definition from Rec. 709
// while PDF and CG uses the one from Rec. Rec. 601
// See http://www.glennchan.info/articles/technical/hd-versus-sd-color-space/hd-versus-sd-color-space.htm
static inline float Lum(float r, float g, float b) {
return r * 0.2126f + g * 0.7152f + b * 0.0722f;
}
static inline float max(float a, float b, float c) {
return SkTMax(a, SkTMax(b, c));
}
static inline float min(float a, float b, float c) {
return SkTMin(a, SkTMin(b, c));
}
static inline float Sat(float r, float g, float b) {
return max(r, g, b) - min(r, g, b);
}
static inline void setSaturationComponents(float* Cmin, float* Cmid, float* Cmax, float s) {
if(*Cmax > *Cmin) {
*Cmid = (*Cmid - *Cmin) * s / (*Cmax - *Cmin);
*Cmax = s;
} else {
*Cmax = 0;
*Cmid = 0;
}
*Cmin = 0;
}
static inline void SetSat(float* r, float* g, float* b, float s) {
if(*r <= *g) {
if(*g <= *b) {
setSaturationComponents(r, g, b, s);
} else if(*r <= *b) {
setSaturationComponents(r, b, g, s);
} else {
setSaturationComponents(b, r, g, s);
}
} else if(*r <= *b) {
setSaturationComponents(g, r, b, s);
} else if(*g <= *b) {
setSaturationComponents(g, b, r, s);
} else {
setSaturationComponents(b, g, r, s);
}
}
static inline void clipColor(float* r, float* g, float* b, float a) {
float L = Lum(*r, *g, *b);
float n = min(*r, *g, *b);
float x = max(*r, *g, *b);
float denom;
if ((n < 0) && (denom = L - n)) { // Compute denom and make sure it's non zero
float scale = L / denom;
*r = L + (*r - L) * scale;
*g = L + (*g - L) * scale;
*b = L + (*b - L) * scale;
}
if ((x > a) && (denom = x - L)) { // Compute denom and make sure it's non zero
float scale = (a - L) / denom;
*r = L + (*r - L) * scale;
*g = L + (*g - L) * scale;
*b = L + (*b - L) * scale;
}
}
static inline void SetLum(float* r, float* g, float* b, float a, float l) {
float d = l - Lum(*r, *g, *b);
*r += d;
*g += d;
*b += d;
clipColor(r, g, b, a);
}
static Sk4f hue_4f(const Sk4f& s, const Sk4f& d) {
float sa = s[SkPM4f::A];
float sr = s[SkPM4f::R];
float sg = s[SkPM4f::G];
float sb = s[SkPM4f::B];
float da = d[SkPM4f::A];
float dr = d[SkPM4f::R];
float dg = d[SkPM4f::G];
float db = d[SkPM4f::B];
float Sr = sr;
float Sg = sg;
float Sb = sb;
SetSat(&Sr, &Sg, &Sb, Sat(dr, dg, db) * sa);
SetLum(&Sr, &Sg, &Sb, sa * da, Lum(dr, dg, db) * sa);
return color_alpha(s * inv_alpha(d) + d * inv_alpha(s) + set_argb(0, Sr, Sg, Sb),
sa + da - sa * da);
}
static Sk4f saturation_4f(const Sk4f& s, const Sk4f& d) {
float sa = s[SkPM4f::A];
float sr = s[SkPM4f::R];
float sg = s[SkPM4f::G];
float sb = s[SkPM4f::B];
float da = d[SkPM4f::A];
float dr = d[SkPM4f::R];
float dg = d[SkPM4f::G];
float db = d[SkPM4f::B];
float Dr = dr;
float Dg = dg;
float Db = db;
SetSat(&Dr, &Dg, &Db, Sat(sr, sg, sb) * da);
SetLum(&Dr, &Dg, &Db, sa * da, Lum(dr, dg, db) * sa);
return color_alpha(s * inv_alpha(d) + d * inv_alpha(s) + set_argb(0, Dr, Dg, Db),
sa + da - sa * da);
}
static Sk4f color_4f(const Sk4f& s, const Sk4f& d) {
float sa = s[SkPM4f::A];
float sr = s[SkPM4f::R];
float sg = s[SkPM4f::G];
float sb = s[SkPM4f::B];
float da = d[SkPM4f::A];
float dr = d[SkPM4f::R];
float dg = d[SkPM4f::G];
float db = d[SkPM4f::B];
float Sr = sr;
float Sg = sg;
float Sb = sb;
SetLum(&Sr, &Sg, &Sb, sa * da, Lum(dr, dg, db) * sa);
Sk4f res = color_alpha(s * inv_alpha(d) + d * inv_alpha(s) + set_argb(0, Sr, Sg, Sb),
sa + da - sa * da);
// Can return tiny negative values ...
return Sk4f::Max(res, Sk4f(0));
}
static Sk4f luminosity_4f(const Sk4f& s, const Sk4f& d) {
float sa = s[SkPM4f::A];
float sr = s[SkPM4f::R];
float sg = s[SkPM4f::G];
float sb = s[SkPM4f::B];
float da = d[SkPM4f::A];
float dr = d[SkPM4f::R];
float dg = d[SkPM4f::G];
float db = d[SkPM4f::B];
float Dr = dr;
float Dg = dg;
float Db = db;
SetLum(&Dr, &Dg, &Db, sa * da, Lum(sr, sg, sb) * da);
Sk4f res = color_alpha(s * inv_alpha(d) + d * inv_alpha(s) + set_argb(0, Dr, Dg, Db),
sa + da - sa * da);
// Can return tiny negative values ...
return Sk4f::Max(res, Sk4f(0));
}
///////////////////////////////////////////////////////////////////////////////
// kClear_Mode, //!< [0, 0]
static SkPMColor clear_modeproc(SkPMColor src, SkPMColor dst) {
return 0;
}
// kSrc_Mode, //!< [Sa, Sc]
static SkPMColor src_modeproc(SkPMColor src, SkPMColor dst) {
return src;
}
// kDst_Mode, //!< [Da, Dc]
static SkPMColor dst_modeproc(SkPMColor src, SkPMColor dst) {
return dst;
}
// kSrcOver_Mode, //!< [Sa + Da - Sa*Da, Sc + (1 - Sa)*Dc]
static SkPMColor srcover_modeproc(SkPMColor src, SkPMColor dst) {
#if 0
// this is the old, more-correct way, but it doesn't guarantee that dst==255
// will always stay opaque
return src + SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src)));
#else
// this is slightly faster, but more importantly guarantees that dst==255
// will always stay opaque
return src + SkAlphaMulQ(dst, 256 - SkGetPackedA32(src));
#endif
}
// kDstOver_Mode, //!< [Sa + Da - Sa*Da, Dc + (1 - Da)*Sc]
static SkPMColor dstover_modeproc(SkPMColor src, SkPMColor dst) {
// this is the reverse of srcover, just flipping src and dst
// see srcover's comment about the 256 for opaqueness guarantees
return dst + SkAlphaMulQ(src, 256 - SkGetPackedA32(dst));
}
// kSrcIn_Mode, //!< [Sa * Da, Sc * Da]
static SkPMColor srcin_modeproc(SkPMColor src, SkPMColor dst) {
return SkAlphaMulQ(src, SkAlpha255To256(SkGetPackedA32(dst)));
}
// kDstIn_Mode, //!< [Sa * Da, Sa * Dc]
static SkPMColor dstin_modeproc(SkPMColor src, SkPMColor dst) {
return SkAlphaMulQ(dst, SkAlpha255To256(SkGetPackedA32(src)));
}
// kSrcOut_Mode, //!< [Sa * (1 - Da), Sc * (1 - Da)]
static SkPMColor srcout_modeproc(SkPMColor src, SkPMColor dst) {
return SkAlphaMulQ(src, SkAlpha255To256(255 - SkGetPackedA32(dst)));
}
// kDstOut_Mode, //!< [Da * (1 - Sa), Dc * (1 - Sa)]
static SkPMColor dstout_modeproc(SkPMColor src, SkPMColor dst) {
return SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src)));
}
// kSrcATop_Mode, //!< [Da, Sc * Da + (1 - Sa) * Dc]
static SkPMColor srcatop_modeproc(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned isa = 255 - sa;
return SkPackARGB32(da,
SkAlphaMulAlpha(da, SkGetPackedR32(src)) +
SkAlphaMulAlpha(isa, SkGetPackedR32(dst)),
SkAlphaMulAlpha(da, SkGetPackedG32(src)) +
SkAlphaMulAlpha(isa, SkGetPackedG32(dst)),
SkAlphaMulAlpha(da, SkGetPackedB32(src)) +
SkAlphaMulAlpha(isa, SkGetPackedB32(dst)));
}
// kDstATop_Mode, //!< [Sa, Sa * Dc + Sc * (1 - Da)]
static SkPMColor dstatop_modeproc(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned ida = 255 - da;
return SkPackARGB32(sa,
SkAlphaMulAlpha(ida, SkGetPackedR32(src)) +
SkAlphaMulAlpha(sa, SkGetPackedR32(dst)),
SkAlphaMulAlpha(ida, SkGetPackedG32(src)) +
SkAlphaMulAlpha(sa, SkGetPackedG32(dst)),
SkAlphaMulAlpha(ida, SkGetPackedB32(src)) +
SkAlphaMulAlpha(sa, SkGetPackedB32(dst)));
}
// kXor_Mode [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc]
static SkPMColor xor_modeproc(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned isa = 255 - sa;
unsigned ida = 255 - da;
return SkPackARGB32(sa + da - (SkAlphaMulAlpha(sa, da) << 1),
SkAlphaMulAlpha(ida, SkGetPackedR32(src)) +
SkAlphaMulAlpha(isa, SkGetPackedR32(dst)),
SkAlphaMulAlpha(ida, SkGetPackedG32(src)) +
SkAlphaMulAlpha(isa, SkGetPackedG32(dst)),
SkAlphaMulAlpha(ida, SkGetPackedB32(src)) +
SkAlphaMulAlpha(isa, SkGetPackedB32(dst)));
}
///////////////////////////////////////////////////////////////////////////////
// kPlus_Mode
static SkPMColor plus_modeproc(SkPMColor src, SkPMColor dst) {
unsigned b = saturated_add(SkGetPackedB32(src), SkGetPackedB32(dst));
unsigned g = saturated_add(SkGetPackedG32(src), SkGetPackedG32(dst));
unsigned r = saturated_add(SkGetPackedR32(src), SkGetPackedR32(dst));
unsigned a = saturated_add(SkGetPackedA32(src), SkGetPackedA32(dst));
return SkPackARGB32(a, r, g, b);
}
// kModulate_Mode
static SkPMColor modulate_modeproc(SkPMColor src, SkPMColor dst) {
int a = SkAlphaMulAlpha(SkGetPackedA32(src), SkGetPackedA32(dst));
int r = SkAlphaMulAlpha(SkGetPackedR32(src), SkGetPackedR32(dst));
int g = SkAlphaMulAlpha(SkGetPackedG32(src), SkGetPackedG32(dst));
int b = SkAlphaMulAlpha(SkGetPackedB32(src), SkGetPackedB32(dst));
return SkPackARGB32(a, r, g, b);
}
static inline int srcover_byte(int a, int b) {
return a + b - SkAlphaMulAlpha(a, b);
}
// kMultiply_Mode
// B(Cb, Cs) = Cb x Cs
// multiply uses its own version of blendfunc_byte because sa and da are not needed
static int blendfunc_multiply_byte(int sc, int dc, int sa, int da) {
return clamp_div255round(sc * (255 - da) + dc * (255 - sa) + sc * dc);
}
static SkPMColor multiply_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = blendfunc_multiply_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = blendfunc_multiply_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = blendfunc_multiply_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kScreen_Mode
static SkPMColor screen_modeproc(SkPMColor src, SkPMColor dst) {
int a = srcover_byte(SkGetPackedA32(src), SkGetPackedA32(dst));
int r = srcover_byte(SkGetPackedR32(src), SkGetPackedR32(dst));
int g = srcover_byte(SkGetPackedG32(src), SkGetPackedG32(dst));
int b = srcover_byte(SkGetPackedB32(src), SkGetPackedB32(dst));
return SkPackARGB32(a, r, g, b);
}
// kOverlay_Mode
static inline int overlay_byte(int sc, int dc, int sa, int da) {
int tmp = sc * (255 - da) + dc * (255 - sa);
int rc;
if (2 * dc <= da) {
rc = 2 * sc * dc;
} else {
rc = sa * da - 2 * (da - dc) * (sa - sc);
}
return clamp_div255round(rc + tmp);
}
static SkPMColor overlay_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = overlay_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = overlay_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = overlay_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kDarken_Mode
static inline int darken_byte(int sc, int dc, int sa, int da) {
int sd = sc * da;
int ds = dc * sa;
if (sd < ds) {
// srcover
return sc + dc - SkDiv255Round(ds);
} else {
// dstover
return dc + sc - SkDiv255Round(sd);
}
}
static SkPMColor darken_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = darken_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = darken_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = darken_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kLighten_Mode
static inline int lighten_byte(int sc, int dc, int sa, int da) {
int sd = sc * da;
int ds = dc * sa;
if (sd > ds) {
// srcover
return sc + dc - SkDiv255Round(ds);
} else {
// dstover
return dc + sc - SkDiv255Round(sd);
}
}
static SkPMColor lighten_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = lighten_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = lighten_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = lighten_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kColorDodge_Mode
static inline int colordodge_byte(int sc, int dc, int sa, int da) {
int diff = sa - sc;
int rc;
if (0 == dc) {
return SkAlphaMulAlpha(sc, 255 - da);
} else if (0 == diff) {
rc = sa * da + sc * (255 - da) + dc * (255 - sa);
} else {
diff = dc * sa / diff;
rc = sa * ((da < diff) ? da : diff) + sc * (255 - da) + dc * (255 - sa);
}
return clamp_div255round(rc);
}
static SkPMColor colordodge_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = colordodge_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = colordodge_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = colordodge_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kColorBurn_Mode
static inline int colorburn_byte(int sc, int dc, int sa, int da) {
int rc;
if (dc == da) {
rc = sa * da + sc * (255 - da) + dc * (255 - sa);
} else if (0 == sc) {
return SkAlphaMulAlpha(dc, 255 - sa);
} else {
int tmp = (da - dc) * sa / sc;
rc = sa * (da - ((da < tmp) ? da : tmp))
+ sc * (255 - da) + dc * (255 - sa);
}
return clamp_div255round(rc);
}
static SkPMColor colorburn_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = colorburn_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = colorburn_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = colorburn_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kHardLight_Mode
static inline int hardlight_byte(int sc, int dc, int sa, int da) {
int rc;
if (2 * sc <= sa) {
rc = 2 * sc * dc;
} else {
rc = sa * da - 2 * (da - dc) * (sa - sc);
}
return clamp_div255round(rc + sc * (255 - da) + dc * (255 - sa));
}
static SkPMColor hardlight_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = hardlight_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = hardlight_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = hardlight_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// returns 255 * sqrt(n/255)
static U8CPU sqrt_unit_byte(U8CPU n) {
return SkSqrtBits(n, 15+4);
}
// kSoftLight_Mode
static inline int softlight_byte(int sc, int dc, int sa, int da) {
int m = da ? dc * 256 / da : 0;
int rc;
if (2 * sc <= sa) {
rc = dc * (sa + ((2 * sc - sa) * (256 - m) >> 8));
} else if (4 * dc <= da) {
int tmp = (4 * m * (4 * m + 256) * (m - 256) >> 16) + 7 * m;
rc = dc * sa + (da * (2 * sc - sa) * tmp >> 8);
} else {
int tmp = sqrt_unit_byte(m) - m;
rc = dc * sa + (da * (2 * sc - sa) * tmp >> 8);
}
return clamp_div255round(rc + sc * (255 - da) + dc * (255 - sa));
}
static SkPMColor softlight_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = softlight_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = softlight_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = softlight_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kDifference_Mode
static inline int difference_byte(int sc, int dc, int sa, int da) {
int tmp = SkMin32(sc * da, dc * sa);
return clamp_signed_byte(sc + dc - 2 * SkDiv255Round(tmp));
}
static SkPMColor difference_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = difference_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = difference_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = difference_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// kExclusion_Mode
static inline int exclusion_byte(int sc, int dc, int, int) {
// this equations is wacky, wait for SVG to confirm it
//int r = sc * da + dc * sa - 2 * sc * dc + sc * (255 - da) + dc * (255 - sa);
// The above equation can be simplified as follows
int r = 255*(sc + dc) - 2 * sc * dc;
return clamp_div255round(r);
}
static SkPMColor exclusion_modeproc(SkPMColor src, SkPMColor dst) {
int sa = SkGetPackedA32(src);
int da = SkGetPackedA32(dst);
int a = srcover_byte(sa, da);
int r = exclusion_byte(SkGetPackedR32(src), SkGetPackedR32(dst), sa, da);
int g = exclusion_byte(SkGetPackedG32(src), SkGetPackedG32(dst), sa, da);
int b = exclusion_byte(SkGetPackedB32(src), SkGetPackedB32(dst), sa, da);
return SkPackARGB32(a, r, g, b);
}
// The CSS compositing spec introduces the following formulas:
// (See https://dvcs.w3.org/hg/FXTF/rawfile/tip/compositing/index.html#blendingnonseparable)
// SkComputeLuminance is similar to this formula but it uses the new definition from Rec. 709
// while PDF and CG uses the one from Rec. Rec. 601
// See http://www.glennchan.info/articles/technical/hd-versus-sd-color-space/hd-versus-sd-color-space.htm
static inline int Lum(int r, int g, int b)
{
return SkDiv255Round(r * 77 + g * 150 + b * 28);
}
static inline int min2(int a, int b) { return a < b ? a : b; }
static inline int max2(int a, int b) { return a > b ? a : b; }
#define minimum(a, b, c) min2(min2(a, b), c)
#define maximum(a, b, c) max2(max2(a, b), c)
static inline int Sat(int r, int g, int b) {
return maximum(r, g, b) - minimum(r, g, b);
}
static inline void setSaturationComponents(int* Cmin, int* Cmid, int* Cmax, int s) {
if(*Cmax > *Cmin) {
*Cmid = SkMulDiv(*Cmid - *Cmin, s, *Cmax - *Cmin);
*Cmax = s;
} else {
*Cmax = 0;
*Cmid = 0;
}
*Cmin = 0;
}
static inline void SetSat(int* r, int* g, int* b, int s) {
if(*r <= *g) {
if(*g <= *b) {
setSaturationComponents(r, g, b, s);
} else if(*r <= *b) {
setSaturationComponents(r, b, g, s);
} else {
setSaturationComponents(b, r, g, s);
}
} else if(*r <= *b) {
setSaturationComponents(g, r, b, s);
} else if(*g <= *b) {
setSaturationComponents(g, b, r, s);
} else {
setSaturationComponents(b, g, r, s);
}
}
static inline void clipColor(int* r, int* g, int* b, int a) {
int L = Lum(*r, *g, *b);
int n = minimum(*r, *g, *b);
int x = maximum(*r, *g, *b);
int denom;
if ((n < 0) && (denom = L - n)) { // Compute denom and make sure it's non zero
*r = L + SkMulDiv(*r - L, L, denom);
*g = L + SkMulDiv(*g - L, L, denom);
*b = L + SkMulDiv(*b - L, L, denom);
}
if ((x > a) && (denom = x - L)) { // Compute denom and make sure it's non zero
int numer = a - L;
*r = L + SkMulDiv(*r - L, numer, denom);
*g = L + SkMulDiv(*g - L, numer, denom);
*b = L + SkMulDiv(*b - L, numer, denom);
}
}
static inline void SetLum(int* r, int* g, int* b, int a, int l) {
int d = l - Lum(*r, *g, *b);
*r += d;
*g += d;
*b += d;
clipColor(r, g, b, a);
}
// non-separable blend modes are done in non-premultiplied alpha
#define blendfunc_nonsep_byte(sc, dc, sa, da, blendval) \
clamp_div255round(sc * (255 - da) + dc * (255 - sa) + blendval)
// kHue_Mode
// B(Cb, Cs) = SetLum(SetSat(Cs, Sat(Cb)), Lum(Cb))
// Create a color with the hue of the source color and the saturation and luminosity of the backdrop color.
static SkPMColor hue_modeproc(SkPMColor src, SkPMColor dst) {
int sr = SkGetPackedR32(src);
int sg = SkGetPackedG32(src);
int sb = SkGetPackedB32(src);
int sa = SkGetPackedA32(src);
int dr = SkGetPackedR32(dst);
int dg = SkGetPackedG32(dst);
int db = SkGetPackedB32(dst);
int da = SkGetPackedA32(dst);
int Sr, Sg, Sb;
if(sa && da) {
Sr = sr * sa;
Sg = sg * sa;
Sb = sb * sa;
SetSat(&Sr, &Sg, &Sb, Sat(dr, dg, db) * sa);
SetLum(&Sr, &Sg, &Sb, sa * da, Lum(dr, dg, db) * sa);
} else {
Sr = 0;
Sg = 0;
Sb = 0;
}
int a = srcover_byte(sa, da);
int r = blendfunc_nonsep_byte(sr, dr, sa, da, Sr);
int g = blendfunc_nonsep_byte(sg, dg, sa, da, Sg);
int b = blendfunc_nonsep_byte(sb, db, sa, da, Sb);
return SkPackARGB32(a, r, g, b);
}
// kSaturation_Mode
// B(Cb, Cs) = SetLum(SetSat(Cb, Sat(Cs)), Lum(Cb))
// Create a color with the saturation of the source color and the hue and luminosity of the backdrop color.
static SkPMColor saturation_modeproc(SkPMColor src, SkPMColor dst) {
int sr = SkGetPackedR32(src);
int sg = SkGetPackedG32(src);
int sb = SkGetPackedB32(src);
int sa = SkGetPackedA32(src);
int dr = SkGetPackedR32(dst);
int dg = SkGetPackedG32(dst);
int db = SkGetPackedB32(dst);
int da = SkGetPackedA32(dst);
int Dr, Dg, Db;
if(sa && da) {
Dr = dr * sa;
Dg = dg * sa;
Db = db * sa;
SetSat(&Dr, &Dg, &Db, Sat(sr, sg, sb) * da);
SetLum(&Dr, &Dg, &Db, sa * da, Lum(dr, dg, db) * sa);
} else {
Dr = 0;
Dg = 0;
Db = 0;
}
int a = srcover_byte(sa, da);
int r = blendfunc_nonsep_byte(sr, dr, sa, da, Dr);
int g = blendfunc_nonsep_byte(sg, dg, sa, da, Dg);
int b = blendfunc_nonsep_byte(sb, db, sa, da, Db);
return SkPackARGB32(a, r, g, b);
}
// kColor_Mode
// B(Cb, Cs) = SetLum(Cs, Lum(Cb))
// Create a color with the hue and saturation of the source color and the luminosity of the backdrop color.
static SkPMColor color_modeproc(SkPMColor src, SkPMColor dst) {
int sr = SkGetPackedR32(src);
int sg = SkGetPackedG32(src);
int sb = SkGetPackedB32(src);
int sa = SkGetPackedA32(src);
int dr = SkGetPackedR32(dst);
int dg = SkGetPackedG32(dst);
int db = SkGetPackedB32(dst);
int da = SkGetPackedA32(dst);
int Sr, Sg, Sb;
if(sa && da) {
Sr = sr * da;
Sg = sg * da;
Sb = sb * da;
SetLum(&Sr, &Sg, &Sb, sa * da, Lum(dr, dg, db) * sa);
} else {
Sr = 0;
Sg = 0;
Sb = 0;
}
int a = srcover_byte(sa, da);
int r = blendfunc_nonsep_byte(sr, dr, sa, da, Sr);
int g = blendfunc_nonsep_byte(sg, dg, sa, da, Sg);
int b = blendfunc_nonsep_byte(sb, db, sa, da, Sb);
return SkPackARGB32(a, r, g, b);
}
// kLuminosity_Mode
// B(Cb, Cs) = SetLum(Cb, Lum(Cs))
// Create a color with the luminosity of the source color and the hue and saturation of the backdrop color.
static SkPMColor luminosity_modeproc(SkPMColor src, SkPMColor dst) {
int sr = SkGetPackedR32(src);
int sg = SkGetPackedG32(src);
int sb = SkGetPackedB32(src);
int sa = SkGetPackedA32(src);
int dr = SkGetPackedR32(dst);
int dg = SkGetPackedG32(dst);
int db = SkGetPackedB32(dst);
int da = SkGetPackedA32(dst);
int Dr, Dg, Db;
if(sa && da) {
Dr = dr * sa;
Dg = dg * sa;
Db = db * sa;
SetLum(&Dr, &Dg, &Db, sa * da, Lum(sr, sg, sb) * da);
} else {
Dr = 0;
Dg = 0;
Db = 0;
}
int a = srcover_byte(sa, da);
int r = blendfunc_nonsep_byte(sr, dr, sa, da, Dr);
int g = blendfunc_nonsep_byte(sg, dg, sa, da, Dg);
int b = blendfunc_nonsep_byte(sb, db, sa, da, Db);
return SkPackARGB32(a, r, g, b);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static SkPM4f as_pm4f(const Sk4f& x) {
SkPM4f pm4;
x.store(pm4.fVec);
return pm4;
}
static Sk4f as_4f(const SkPM4f& pm4) {
return Sk4f::Load(pm4.fVec);
}
static void assert_unit(const SkPM4f& r) {
#ifdef SK_DEBUG
const float eps = 0.00001f;
const float min = 0 - eps;
const float max = 1 + eps;
for (int i = 0; i < 4; ++i) {
SkASSERT(r.fVec[i] >= min && r.fVec[i] <= max);
}
#endif
}
template <Sk4f (blend)(const Sk4f&, const Sk4f&)> SkPM4f proc_4f(const SkPM4f& s, const SkPM4f& d) {
assert_unit(s);
assert_unit(d);
SkPM4f r = as_pm4f(blend(as_4f(s), as_4f(d)));
assert_unit(r);
return r;
}
const ProcCoeff gProcCoeffs[] = {
{ clear_modeproc, proc_4f<clear_4f>, SkXfermode::kZero_Coeff, SkXfermode::kZero_Coeff },
{ src_modeproc, proc_4f<src_4f>, SkXfermode::kOne_Coeff, SkXfermode::kZero_Coeff },
{ dst_modeproc, proc_4f<dst_4f>, SkXfermode::kZero_Coeff, SkXfermode::kOne_Coeff },
{ srcover_modeproc, proc_4f<srcover_4f>, SkXfermode::kOne_Coeff, SkXfermode::kISA_Coeff },
{ dstover_modeproc, proc_4f<dstover_4f>, SkXfermode::kIDA_Coeff, SkXfermode::kOne_Coeff },
{ srcin_modeproc, proc_4f<srcin_4f>, SkXfermode::kDA_Coeff, SkXfermode::kZero_Coeff },
{ dstin_modeproc, proc_4f<dstin_4f>, SkXfermode::kZero_Coeff, SkXfermode::kSA_Coeff },
{ srcout_modeproc, proc_4f<srcout_4f>, SkXfermode::kIDA_Coeff, SkXfermode::kZero_Coeff },
{ dstout_modeproc, proc_4f<dstout_4f>, SkXfermode::kZero_Coeff, SkXfermode::kISA_Coeff },
{ srcatop_modeproc, proc_4f<srcatop_4f>, SkXfermode::kDA_Coeff, SkXfermode::kISA_Coeff },
{ dstatop_modeproc, proc_4f<dstatop_4f>, SkXfermode::kIDA_Coeff, SkXfermode::kSA_Coeff },
{ xor_modeproc, proc_4f<xor_4f>, SkXfermode::kIDA_Coeff, SkXfermode::kISA_Coeff },
{ plus_modeproc, proc_4f<plus_4f>, SkXfermode::kOne_Coeff, SkXfermode::kOne_Coeff },
{ modulate_modeproc, proc_4f<modulate_4f>, SkXfermode::kZero_Coeff, SkXfermode::kSC_Coeff },
{ screen_modeproc, proc_4f<screen_4f>, SkXfermode::kOne_Coeff, SkXfermode::kISC_Coeff },
{ overlay_modeproc, proc_4f<overlay_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ darken_modeproc, proc_4f<darken_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ lighten_modeproc, proc_4f<lighten_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ colordodge_modeproc, proc_4f<colordodge_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ colorburn_modeproc, proc_4f<colorburn_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ hardlight_modeproc, proc_4f<hardlight_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ softlight_modeproc, proc_4f<softlight_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ difference_modeproc, proc_4f<difference_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ exclusion_modeproc, proc_4f<exclusion_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ multiply_modeproc, proc_4f<multiply_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ hue_modeproc, proc_4f<hue_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ saturation_modeproc, proc_4f<saturation_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ color_modeproc, proc_4f<color_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
{ luminosity_modeproc, proc_4f<luminosity_4f>, CANNOT_USE_COEFF, CANNOT_USE_COEFF },
};
///////////////////////////////////////////////////////////////////////////////
bool SkXfermode::asMode(Mode* mode) const {
return false;
}
#if SK_SUPPORT_GPU
sk_sp<GrFragmentProcessor> SkXfermode::makeFragmentProcessorForImageFilter(
sk_sp<GrFragmentProcessor>) const {
// This should never be called.
// TODO: make pure virtual in SkXfermode once Android update lands
SkASSERT(0);
return nullptr;
}
sk_sp<GrXPFactory> SkXfermode::asXPFactory() const {
// This should never be called.
// TODO: make pure virtual in SkXfermode once Android update lands
SkASSERT(0);
return nullptr;
}
#endif
SkPMColor SkXfermode::xferColor(SkPMColor src, SkPMColor dst) const{
// no-op. subclasses should override this
return dst;
}
void SkXfermode::xfer32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
if (nullptr == aa) {
for (int i = count - 1; i >= 0; --i) {
dst[i] = this->xferColor(src[i], dst[i]);
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = this->xferColor(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = C;
}
}
}
}
void SkXfermode::xfer16(uint16_t* dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
if (nullptr == aa) {
for (int i = count - 1; i >= 0; --i) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
dst[i] = SkPixel32ToPixel16_ToU16(this->xferColor(src[i], dstC));
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
SkPMColor C = this->xferColor(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = SkPixel32ToPixel16_ToU16(C);
}
}
}
}
void SkXfermode::xferA8(SkAlpha* SK_RESTRICT dst,
const SkPMColor src[], int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
if (nullptr == aa) {
for (int i = count - 1; i >= 0; --i) {
SkPMColor res = this->xferColor(src[i], (dst[i] << SK_A32_SHIFT));
dst[i] = SkToU8(SkGetPackedA32(res));
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkAlpha dstA = dst[i];
unsigned A = SkGetPackedA32(this->xferColor(src[i],
(SkPMColor)(dstA << SK_A32_SHIFT)));
if (0xFF != a) {
A = SkAlphaBlend(A, dstA, SkAlpha255To256(a));
}
dst[i] = SkToU8(A);
}
}
}
}
bool SkXfermode::supportsCoverageAsAlpha() const {
return false;
}
bool SkXfermode::isOpaque(SkXfermode::SrcColorOpacity opacityType) const {
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
sk_sp<SkFlattenable> SkProcCoeffXfermode::CreateProc(SkReadBuffer& buffer) {
uint32_t mode32 = buffer.read32();
if (!buffer.validate(mode32 < SK_ARRAY_COUNT(gProcCoeffs))) {
return nullptr;
}
return SkXfermode::Make((SkXfermode::Mode)mode32);
}
void SkProcCoeffXfermode::flatten(SkWriteBuffer& buffer) const {
buffer.write32(fMode);
}
bool SkProcCoeffXfermode::asMode(Mode* mode) const {
if (mode) {
*mode = fMode;
}
return true;
}
bool SkProcCoeffXfermode::supportsCoverageAsAlpha() const {
if (CANNOT_USE_COEFF == fSrcCoeff) {
return false;
}
switch (fDstCoeff) {
case SkXfermode::kOne_Coeff:
case SkXfermode::kISA_Coeff:
case SkXfermode::kISC_Coeff:
return true;
default:
return false;
}
}
bool SkProcCoeffXfermode::isOpaque(SkXfermode::SrcColorOpacity opacityType) const {
if (CANNOT_USE_COEFF == fSrcCoeff) {
return false;
}
if (SkXfermode::kDA_Coeff == fSrcCoeff || SkXfermode::kDC_Coeff == fSrcCoeff ||
SkXfermode::kIDA_Coeff == fSrcCoeff || SkXfermode::kIDC_Coeff == fSrcCoeff) {
return false;
}
switch (fDstCoeff) {
case SkXfermode::kZero_Coeff:
return true;
case SkXfermode::kISA_Coeff:
return SkXfermode::kOpaque_SrcColorOpacity == opacityType;
case SkXfermode::kSA_Coeff:
return SkXfermode::kTransparentBlack_SrcColorOpacity == opacityType ||
SkXfermode::kTransparentAlpha_SrcColorOpacity == opacityType;
case SkXfermode::kSC_Coeff:
return SkXfermode::kTransparentBlack_SrcColorOpacity == opacityType;
default:
return false;
}
}
void SkProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = fProc;
if (proc) {
if (nullptr == aa) {
for (int i = count - 1; i >= 0; --i) {
dst[i] = proc(src[i], dst[i]);
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = C;
}
}
}
}
}
void SkProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = fProc;
if (proc) {
if (nullptr == aa) {
for (int i = count - 1; i >= 0; --i) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC));
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
SkPMColor C = proc(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = SkPixel32ToPixel16_ToU16(C);
}
}
}
}
}
void SkProcCoeffXfermode::xferA8(SkAlpha* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = fProc;
if (proc) {
if (nullptr == aa) {
for (int i = count - 1; i >= 0; --i) {
SkPMColor res = proc(src[i], dst[i] << SK_A32_SHIFT);
dst[i] = SkToU8(SkGetPackedA32(res));
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkAlpha dstA = dst[i];
SkPMColor res = proc(src[i], dstA << SK_A32_SHIFT);
unsigned A = SkGetPackedA32(res);
if (0xFF != a) {
A = SkAlphaBlend(A, dstA, SkAlpha255To256(a));
}
dst[i] = SkToU8(A);
}
}
}
}
}
#if SK_SUPPORT_GPU
sk_sp<GrFragmentProcessor> SkProcCoeffXfermode::makeFragmentProcessorForImageFilter(
sk_sp<GrFragmentProcessor> dst) const {
SkASSERT(dst);
return GrXfermodeFragmentProcessor::MakeFromDstProcessor(std::move(dst), fMode);
}
sk_sp<GrXPFactory> SkProcCoeffXfermode::asXPFactory() const {
if (CANNOT_USE_COEFF != fSrcCoeff) {
sk_sp<GrXPFactory> result(GrPorterDuffXPFactory::Make(fMode));
SkASSERT(result);
return result;
}
SkASSERT(GrCustomXfermode::IsSupportedMode(fMode));
return GrCustomXfermode::MakeXPFactory(fMode);
}
#endif
const char* SkXfermode::ModeName(Mode mode) {
SkASSERT((unsigned) mode <= (unsigned)kLastMode);
const char* gModeStrings[] = {
"Clear", "Src", "Dst", "SrcOver", "DstOver", "SrcIn", "DstIn",
"SrcOut", "DstOut", "SrcATop", "DstATop", "Xor", "Plus",
"Modulate", "Screen", "Overlay", "Darken", "Lighten", "ColorDodge",
"ColorBurn", "HardLight", "SoftLight", "Difference", "Exclusion",
"Multiply", "Hue", "Saturation", "Color", "Luminosity"
};
return gModeStrings[mode];
static_assert(SK_ARRAY_COUNT(gModeStrings) == kLastMode + 1, "mode_count");
}
#ifndef SK_IGNORE_TO_STRING
void SkProcCoeffXfermode::toString(SkString* str) const {
str->append("SkProcCoeffXfermode: ");
str->append("mode: ");
str->append(ModeName(fMode));
static const char* gCoeffStrings[kCoeffCount] = {
"Zero", "One", "SC", "ISC", "DC", "IDC", "SA", "ISA", "DA", "IDA"
};
str->append(" src: ");
if (CANNOT_USE_COEFF == fSrcCoeff) {
str->append("can't use");
} else {
str->append(gCoeffStrings[fSrcCoeff]);
}
str->append(" dst: ");
if (CANNOT_USE_COEFF == fDstCoeff) {
str->append("can't use");
} else {
str->append(gCoeffStrings[fDstCoeff]);
}
}
#endif
sk_sp<SkXfermode> SkXfermode::Make(Mode mode) {
if ((unsigned)mode >= kModeCount) {
// report error
return nullptr;
}
// Skia's "default" mode is srcover. nullptr in SkPaint is interpreted as srcover
// so we can just return nullptr from the factory.
if (kSrcOver_Mode == mode) {
return nullptr;
}
SkASSERT(SK_ARRAY_COUNT(gProcCoeffs) == kModeCount);
static SkOnce once[SkXfermode::kLastMode+1];
static SkXfermode* cached[SkXfermode::kLastMode+1];
once[mode]([mode] {
ProcCoeff rec = gProcCoeffs[mode];
if (auto xfermode = SkOpts::create_xfermode(rec, mode)) {
cached[mode] = xfermode;
} else {
cached[mode] = new SkProcCoeffXfermode(rec, mode);
}
});
return sk_ref_sp(cached[mode]);
}
SkXfermodeProc SkXfermode::GetProc(Mode mode) {
SkXfermodeProc proc = nullptr;
if ((unsigned)mode < kModeCount) {
proc = gProcCoeffs[mode].fProc;
}
return proc;
}
SkXfermodeProc4f SkXfermode::GetProc4f(Mode mode) {
SkXfermodeProc4f proc = nullptr;
if ((unsigned)mode < kModeCount) {
proc = gProcCoeffs[mode].fProc4f;
}
return proc;
}
static SkPM4f missing_proc4f(const SkPM4f& src, const SkPM4f& dst) {
return src;
}
SkXfermodeProc4f SkXfermode::getProc4f() const {
Mode mode;
return this->asMode(&mode) ? GetProc4f(mode) : missing_proc4f;
}
bool SkXfermode::ModeAsCoeff(Mode mode, Coeff* src, Coeff* dst) {
SkASSERT(SK_ARRAY_COUNT(gProcCoeffs) == kModeCount);
if ((unsigned)mode >= (unsigned)kModeCount) {
// illegal mode parameter
return false;
}
const ProcCoeff& rec = gProcCoeffs[mode];
if (CANNOT_USE_COEFF == rec.fSC) {
return false;
}
SkASSERT(CANNOT_USE_COEFF != rec.fDC);
if (src) {
*src = rec.fSC;
}
if (dst) {
*dst = rec.fDC;
}
return true;
}
bool SkXfermode::AsMode(const SkXfermode* xfer, Mode* mode) {
if (nullptr == xfer) {
if (mode) {
*mode = kSrcOver_Mode;
}
return true;
}
return xfer->asMode(mode);
}
bool SkXfermode::IsMode(const SkXfermode* xfer, Mode mode) {
// if xfer==null then the mode is srcover
Mode m = kSrcOver_Mode;
if (xfer && !xfer->asMode(&m)) {
return false;
}
return mode == m;
}
bool SkXfermode::SupportsCoverageAsAlpha(const SkXfermode* xfer) {
// if xfer is nullptr we treat it as srcOver which always supports coverageAsAlpha
if (!xfer) {
return true;
}
return xfer->supportsCoverageAsAlpha();
}
bool SkXfermode::IsOpaque(const SkXfermode* xfer, SrcColorOpacity opacityType) {
// if xfer is nullptr we treat it as srcOver which is opaque if our src is opaque
if (!xfer) {
return SkXfermode::kOpaque_SrcColorOpacity == opacityType;
}
return xfer->isOpaque(opacityType);
}
bool SkXfermode::appendStages(SkRasterPipeline* pipeline) const {
return this->onAppendStages(pipeline);
}
bool SkXfermode::onAppendStages(SkRasterPipeline*) const {
return false;
}
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkXfermode)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkProcCoeffXfermode)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
static Sk4f inv(const Sk4f& x) { return 1.0f - x; }
// Most of these modes apply the same logic kernel to each channel.
template <Sk4f kernel(const Sk4f& s, const Sk4f& sa, const Sk4f& d, const Sk4f& da)>
static void SK_VECTORCALL rgba(SkRasterPipeline::Stage* st, size_t x, size_t tail,
Sk4f r, Sk4f g, Sk4f b, Sk4f a,
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) {
r = kernel(r,a,dr,da);
g = kernel(g,a,dg,da);
b = kernel(b,a,db,da);
a = kernel(a,a,da,da);
st->next(x,tail, r,g,b,a, dr,dg,db,da);
}
#define KERNEL(name) static Sk4f name(const Sk4f& s, const Sk4f& sa, const Sk4f& d, const Sk4f& da)
KERNEL(clear) { return 0.0f; }
KERNEL(dst) { return d; }
KERNEL(dstover) { return d + inv(da)*s; }
KERNEL(srcin) { return s * da; }
KERNEL(srcout) { return s * inv(da); }
KERNEL(srcatop) { return s*da + d*inv(sa); }
KERNEL(dstin) { return srcin (d,da,s,sa); }
KERNEL(dstout) { return srcout (d,da,s,sa); }
KERNEL(dstatop) { return srcatop(d,da,s,sa); }
KERNEL(modulate) { return s*d; }
KERNEL(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
KERNEL(plus_) { return s + d; }
KERNEL(screen) { return s + d - s*d; }
KERNEL(xor_) { return s*inv(da) + d*inv(sa); }
// Most of the rest apply the same logic to each color channel, and srcover's logic to alpha.
// (darken and lighten can actually go either way, but they're a little faster this way.)
template <Sk4f kernel(const Sk4f& s, const Sk4f& sa, const Sk4f& d, const Sk4f& da)>
static void SK_VECTORCALL rgb_srcover(SkRasterPipeline::Stage* st, size_t x, size_t tail,
Sk4f r, Sk4f g, Sk4f b, Sk4f a,
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) {
r = kernel(r,a,dr,da);
g = kernel(g,a,dg,da);
b = kernel(b,a,db,da);
a = a + da*inv(a);
st->next(x,tail, r,g,b,a, dr,dg,db,da);
}
KERNEL(colorburn) {
return (d == da ).thenElse(d + s*inv(da),
(s == 0.0f).thenElse(s + d*inv(sa),
sa*(da - Sk4f::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
}
KERNEL(colordodge) {
return (d == 0.0f).thenElse(d + s*inv(da),
(s == sa ).thenElse(s + d*inv(sa),
sa*Sk4f::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
}
KERNEL(darken) { return s + d - Sk4f::Max(s*da, d*sa); }
KERNEL(difference) { return s + d - 2.0f*Sk4f::Min(s*da,d*sa); }
KERNEL(exclusion) { return s + d - 2.0f*s*d; }
KERNEL(hardlight) {
return s*inv(da) + d*inv(sa)
+ (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s));
}
KERNEL(lighten) { return s + d - Sk4f::Min(s*da, d*sa); }
KERNEL(overlay) { return hardlight(d,da,s,sa); }
KERNEL(softlight) {
Sk4f m = (da > 0.0f).thenElse(d / da, 0.0f),
s2 = 2.0f*s,
m4 = 4.0f*m;
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
Sk4f darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = m.rsqrt().invert() - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef KERNEL
bool SkProcCoeffXfermode::onAppendStages(SkRasterPipeline* p) const {
switch (fMode) {
case kSrcOver_Mode: SkASSERT(false); return false; // Well how did we get here?
case kSrc_Mode: /*This stage is a no-op.*/ return true;
case kDst_Mode: p->append(rgba<dst>); return true;
case kSrcATop_Mode: p->append(rgba<srcatop>); return true;
case kDstATop_Mode: p->append(rgba<dstatop>); return true;
case kSrcIn_Mode: p->append(rgba<srcin>); return true;
case kDstIn_Mode: p->append(rgba<dstin>); return true;
case kSrcOut_Mode: p->append(rgba<srcout>); return true;
case kDstOut_Mode: p->append(rgba<dstout>); return true;
case kDstOver_Mode: p->append(rgba<dstover>); return true;
case kClear_Mode: p->append(rgba<clear>); return true;
case kModulate_Mode: p->append(rgba<modulate>); return true;
case kMultiply_Mode: p->append(rgba<multiply>); return true;
case kPlus_Mode: p->append(rgba<plus_>); return true;
case kScreen_Mode: p->append(rgba<screen>); return true;
case kXor_Mode: p->append(rgba<xor_>); return true;
case kColorBurn_Mode: p->append(rgb_srcover<colorburn>); return true;
case kColorDodge_Mode: p->append(rgb_srcover<colordodge>); return true;
case kDarken_Mode: p->append(rgb_srcover<darken>); return true;
case kDifference_Mode: p->append(rgb_srcover<difference>); return true;
case kExclusion_Mode: p->append(rgb_srcover<exclusion>); return true;
case kHardLight_Mode: p->append(rgb_srcover<hardlight>); return true;
case kLighten_Mode: p->append(rgb_srcover<lighten>); return true;
case kOverlay_Mode: p->append(rgb_srcover<overlay>); return true;
case kSoftLight_Mode: p->append(rgb_srcover<softlight>); return true;
// TODO
case kColor_Mode: return false;
case kHue_Mode: return false;
case kLuminosity_Mode: return false;
case kSaturation_Mode: return false;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkBlendMode_SupportsCoverageAsAlpha(SkBlendMode mode) {
switch (mode) {
case SkBlendMode::kDst:
case SkBlendMode::kSrcOver:
case SkBlendMode::kDstOver:
case SkBlendMode::kDstOut:
case SkBlendMode::kSrcATop:
case SkBlendMode::kXor:
case SkBlendMode::kPlus:
return true;
default:
break;
}
return false;
}
bool SkXfermode::IsOpaque(SkBlendMode mode, SrcColorOpacity opacityType) {
const ProcCoeff rec = gProcCoeffs[(int)mode];
switch (rec.fSC) {
case kDA_Coeff:
case kDC_Coeff:
case kIDA_Coeff:
case kIDC_Coeff:
return false;
default:
break;
}
switch (rec.fDC) {
case kZero_Coeff:
return true;
case kISA_Coeff:
return kOpaque_SrcColorOpacity == opacityType;
case kSA_Coeff:
return kTransparentBlack_SrcColorOpacity == opacityType ||
kTransparentAlpha_SrcColorOpacity == opacityType;
case kSC_Coeff:
return kTransparentBlack_SrcColorOpacity == opacityType;
default:
return false;
}
return false;
}
#if SK_SUPPORT_GPU
sk_sp<GrXPFactory> SkBlendMode_AsXPFactory(SkBlendMode mode) {
const ProcCoeff rec = gProcCoeffs[(int)mode];
if (CANNOT_USE_COEFF != rec.fSC) {
sk_sp<GrXPFactory> result(GrPorterDuffXPFactory::Make(mode));
SkASSERT(result);
return result;
}
SkASSERT(GrCustomXfermode::IsSupportedMode((SkXfermode::Mode)mode));
return GrCustomXfermode::MakeXPFactory((SkXfermode::Mode)mode);
}
#endif
|