1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTLList_DEFINED
#define SkTLList_DEFINED
#include "SkTInternalLList.h"
#include "SkMalloc.h"
#include "SkTypes.h"
#include <utility>
/** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the
the list creates the objects and they are deleted upon removal. This class block-allocates
space for entries based on a param passed to the constructor.
Elements of the list can be constructed in place using the following macros:
SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args)
SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args)
where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded
constructor arguments for type_name. These macros behave like addBefore() and addAfter().
allocCnt is the number of objects to allocate as a group. In the worst case fragmentation
each object is using the space required for allocCnt unfragmented objects.
*/
template <typename T, unsigned int N> class SkTLList : SkNoncopyable {
private:
struct Block;
struct Node {
char fObj[sizeof(T)];
SK_DECLARE_INTERNAL_LLIST_INTERFACE(Node);
Block* fBlock; // owning block.
};
typedef SkTInternalLList<Node> NodeList;
public:
class Iter;
// Having fCount initialized to -1 indicates that the first time we attempt to grab a free node
// all the nodes in the pre-allocated first block need to be inserted into the free list. This
// allows us to skip that loop in instances when the list is never populated.
SkTLList() : fCount(-1) {}
~SkTLList() {
this->validate();
typename NodeList::Iter iter;
Node* node = iter.init(fList, Iter::kHead_IterStart);
while (node) {
SkTCast<T*>(node->fObj)->~T();
Block* block = node->fBlock;
node = iter.next();
if (0 == --block->fNodesInUse) {
for (unsigned int i = 0; i < N; ++i) {
block->fNodes[i].~Node();
}
if (block != &fFirstBlock) {
sk_free(block);
}
}
}
}
/** Adds a new element to the list at the head. */
template <typename... Args> T* addToHead(Args&&... args) {
this->validate();
Node* node = this->createNode();
fList.addToHead(node);
this->validate();
return new (node->fObj) T(std::forward<Args>(args)...);
}
/** Adds a new element to the list at the tail. */
template <typename... Args> T* addToTail(Args&&... args) {
this->validate();
Node* node = this->createNode();
fList.addToTail(node);
this->validate();
return new (node->fObj) T(std::forward<Args>(args)...);
}
/** Adds a new element to the list before the location indicated by the iterator. If the
iterator refers to a nullptr location then the new element is added at the tail */
template <typename... Args> T* addBefore(Iter location, Args&&... args) {
this->validate();
Node* node = this->createNode();
fList.addBefore(node, location.getNode());
this->validate();
return new (node->fObj) T(std::forward<Args>(args)...);
}
/** Adds a new element to the list after the location indicated by the iterator. If the
iterator refers to a nullptr location then the new element is added at the head */
template <typename... Args> T* addAfter(Iter location, Args&&... args) {
this->validate();
Node* node = this->createNode();
fList.addAfter(node, location.getNode());
this->validate();
return new (node->fObj) T(std::forward<Args>(args)...);
}
/** Convenience methods for getting an iterator initialized to the head/tail of the list. */
Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); }
Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); }
T* head() { return Iter(*this, Iter::kHead_IterStart).get(); }
T* tail() { return Iter(*this, Iter::kTail_IterStart).get(); }
const T* head() const { return Iter(*this, Iter::kHead_IterStart).get(); }
const T* tail() const { return Iter(*this, Iter::kTail_IterStart).get(); }
void popHead() {
this->validate();
Node* node = fList.head();
if (node) {
this->removeNode(node);
}
this->validate();
}
void popTail() {
this->validate();
Node* node = fList.head();
if (node) {
this->removeNode(node);
}
this->validate();
}
void remove(T* t) {
this->validate();
Node* node = reinterpret_cast<Node*>(t);
SkASSERT(reinterpret_cast<T*>(node->fObj) == t);
this->removeNode(node);
this->validate();
}
void reset() {
this->validate();
Iter iter(*this, Iter::kHead_IterStart);
while (iter.get()) {
Iter next = iter;
next.next();
this->remove(iter.get());
iter = next;
}
SkASSERT(0 == fCount || -1 == fCount);
this->validate();
}
int count() const { return SkTMax(fCount ,0); }
bool isEmpty() const { this->validate(); return 0 == fCount || -1 == fCount; }
bool operator== (const SkTLList& list) const {
if (this == &list) {
return true;
}
// Call count() rather than use fCount because an empty list may have fCount = 0 or -1.
if (this->count() != list.count()) {
return false;
}
for (Iter a(*this, Iter::kHead_IterStart), b(list, Iter::kHead_IterStart);
a.get();
a.next(), b.next()) {
SkASSERT(b.get()); // already checked that counts match.
if (!(*a.get() == *b.get())) {
return false;
}
}
return true;
}
bool operator!= (const SkTLList& list) const { return !(*this == list); }
/** The iterator becomes invalid if the element it refers to is removed from the list. */
class Iter : private NodeList::Iter {
private:
typedef typename NodeList::Iter INHERITED;
public:
typedef typename INHERITED::IterStart IterStart;
//!< Start the iterator at the head of the list.
static const IterStart kHead_IterStart = INHERITED::kHead_IterStart;
//!< Start the iterator at the tail of the list.
static const IterStart kTail_IterStart = INHERITED::kTail_IterStart;
Iter() {}
Iter(const SkTLList& list, IterStart start = kHead_IterStart) {
INHERITED::init(list.fList, start);
}
T* init(const SkTLList& list, IterStart start = kHead_IterStart) {
return this->nodeToObj(INHERITED::init(list.fList, start));
}
T* get() { return this->nodeToObj(INHERITED::get()); }
T* next() { return this->nodeToObj(INHERITED::next()); }
T* prev() { return this->nodeToObj(INHERITED::prev()); }
Iter& operator= (const Iter& iter) { INHERITED::operator=(iter); return *this; }
private:
friend class SkTLList;
Node* getNode() { return INHERITED::get(); }
T* nodeToObj(Node* node) {
if (node) {
return reinterpret_cast<T*>(node->fObj);
} else {
return nullptr;
}
}
};
private:
struct Block {
int fNodesInUse;
Node fNodes[N];
};
void delayedInit() {
SkASSERT(-1 == fCount);
fFirstBlock.fNodesInUse = 0;
for (unsigned int i = 0; i < N; ++i) {
fFreeList.addToHead(fFirstBlock.fNodes + i);
fFirstBlock.fNodes[i].fBlock = &fFirstBlock;
}
fCount = 0;
this->validate();
}
Node* createNode() {
if (-1 == fCount) {
this->delayedInit();
}
Node* node = fFreeList.head();
if (node) {
fFreeList.remove(node);
++node->fBlock->fNodesInUse;
} else {
// Should not get here when count == 0 because we always have the preallocated first
// block.
SkASSERT(fCount > 0);
Block* block = reinterpret_cast<Block*>(sk_malloc_throw(sizeof(Block)));
node = &block->fNodes[0];
new (node) Node;
node->fBlock = block;
block->fNodesInUse = 1;
for (unsigned int i = 1; i < N; ++i) {
new (block->fNodes + i) Node;
fFreeList.addToHead(block->fNodes + i);
block->fNodes[i].fBlock = block;
}
}
++fCount;
return node;
}
void removeNode(Node* node) {
SkASSERT(node);
fList.remove(node);
SkTCast<T*>(node->fObj)->~T();
Block* block = node->fBlock;
// Don't ever elease the first block, just add its nodes to the free list
if (0 == --block->fNodesInUse && block != &fFirstBlock) {
for (unsigned int i = 0; i < N; ++i) {
if (block->fNodes + i != node) {
fFreeList.remove(block->fNodes + i);
}
block->fNodes[i].~Node();
}
sk_free(block);
} else {
fFreeList.addToHead(node);
}
--fCount;
this->validate();
}
void validate() const {
#ifdef SK_DEBUG
bool isEmpty = false;
if (-1 == fCount) {
// We should not yet have initialized the free list.
SkASSERT(fFreeList.isEmpty());
isEmpty = true;
} else if (0 == fCount) {
// Should only have the nodes from the first block in the free list.
SkASSERT(fFreeList.countEntries() == N);
isEmpty = true;
}
SkASSERT(isEmpty == fList.isEmpty());
fList.validate();
fFreeList.validate();
typename NodeList::Iter iter;
Node* freeNode = iter.init(fFreeList, Iter::kHead_IterStart);
while (freeNode) {
SkASSERT(fFreeList.isInList(freeNode));
Block* block = freeNode->fBlock;
// Only the first block is allowed to have all its nodes in the free list.
SkASSERT(block->fNodesInUse > 0 || block == &fFirstBlock);
SkASSERT((unsigned)block->fNodesInUse < N);
int activeCnt = 0;
int freeCnt = 0;
for (unsigned int i = 0; i < N; ++i) {
bool free = fFreeList.isInList(block->fNodes + i);
bool active = fList.isInList(block->fNodes + i);
SkASSERT(free != active);
activeCnt += active;
freeCnt += free;
}
SkASSERT(activeCnt == block->fNodesInUse);
freeNode = iter.next();
}
int count = 0;
Node* activeNode = iter.init(fList, Iter::kHead_IterStart);
while (activeNode) {
++count;
SkASSERT(fList.isInList(activeNode));
Block* block = activeNode->fBlock;
SkASSERT(block->fNodesInUse > 0 && (unsigned)block->fNodesInUse <= N);
int activeCnt = 0;
int freeCnt = 0;
for (unsigned int i = 0; i < N; ++i) {
bool free = fFreeList.isInList(block->fNodes + i);
bool active = fList.isInList(block->fNodes + i);
SkASSERT(free != active);
activeCnt += active;
freeCnt += free;
}
SkASSERT(activeCnt == block->fNodesInUse);
activeNode = iter.next();
}
SkASSERT(count == fCount || (0 == count && -1 == fCount));
#endif
}
NodeList fList;
NodeList fFreeList;
Block fFirstBlock;
int fCount;
};
#endif
|