1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRegion.h"
#include "SkChunkAlloc.h"
#include "SkTDArray.h"
#include "SkTemplates.h"
#if 0
struct VEdge {
VEdge* fPrev;
VEdge* fNext;
SkRegion::RunType fX;
SkRegion::RunType fTop;
SkRegion::RunType fBottom;
int fWinding;
void removeFromList() {
fPrev->fNext = fNext;
fNext->fPrev = fPrev;
}
void backwardsInsert() {
while (fPrev->fX > fX) {
VEdge* prev = fPrev;
VEdge* next = this;
// remove prev from the list
prev->fPrev->fNext = next;
next->fPrev = prev->fPrev;
// insert prev after next
prev->fNext = next->fNext;
next->fNext->fPrev = prev;
next->fNext = prev;
prev->fPrev = next;
}
}
static void SetFromRect(VEdge edges[], const SkIRect& r) {
edges[0].fX = r.fLeft;
edges[0].fTop = r.fTop;
edges[0].fBottom = r.fBottom;
edges[0].fWinding = -1;
edges[1].fX = r.fRight;
edges[1].fTop = r.fTop;
edges[1].fBottom = r.fBottom;
edges[1].fWinding = 1;
}
};
class Accumulator {
public:
Accumulator(SkRegion::RunType top, int numRects);
~Accumulator() {}
SkRegion::RunType append(SkRegion::RunType top, const VEdge* edge);
int count() const { return fTotalCount; }
void copyTo(SkRegion::RunType dst[]);
private:
struct Row {
SkRegion::RunType* fPtr;
SkRegion::RunType fBottom;
int fCount; // just [L R] count
};
SkChunkAlloc fAlloc;
SkTDArray<Row> fRows;
SkRegion::RunType fTop;
int fTotalCount;
int fRectCount;
};
Accumulator::Accumulator(SkRegion::RunType top, int numRects)
: fAlloc((1 + numRects * 2 + 1) * sizeof(int32_t)) {
fRectCount = numRects;
fTop = top;
fTotalCount = 2; // Top + final sentinel
}
//#define TRACE_ROW(code) code
#define TRACE_ROW(code)
SkRegion::RunType Accumulator::append(SkRegion::RunType currY, const VEdge* edge) {
// worst-case size
size_t size = fRectCount * 2 * sizeof(SkRegion::RunType);
SkRegion::RunType* row = (SkRegion::RunType*)fAlloc.allocThrow(size);
SkRegion::RunType* rowHead = row;
SkRegion::RunType nextY = SkRegion::kRunTypeSentinel;
int winding = edge->fWinding;
// record the L R values for this row
if (edge->fTop > currY) {
nextY = SkMin32(nextY, edge->fTop);
TRACE_ROW(SkDebugf("Y %d\n", currY);)
} else {
SkRegion::RunType currR;
*row++ = edge->fX;
TRACE_ROW(SkDebugf("Y %d [%d", currY, edge->fX);)
edge = edge->fNext;
for (;;) {
if (edge->fTop > currY) {
nextY = SkMin32(nextY, edge->fTop);
break;
}
int prevWinding = winding;
winding += edge->fWinding;
if (0 == winding) { // we finished an interval
currR = edge->fX;
} else if (0 == prevWinding && edge->fX > currR) {
*row++ = currR;
*row++ = edge->fX;
TRACE_ROW(SkDebugf(" %d] [%d", currR, edge->fX);)
}
nextY = SkMin32(nextY, edge->fBottom);
edge = edge->fNext;
}
SkASSERT(0 == winding);
*row++ = currR;
TRACE_ROW(SkDebugf(" %d]\n", currR);)
}
int rowCount = row - rowHead;
// now see if we have already seen this row, or if its unique
Row* r = fRows.count() ? &fRows[fRows.count() - 1] : NULL;
if (r && (r->fCount == rowCount) &&
!memcmp(r->fPtr, rowHead,
rowCount * sizeof(SkRegion::RunType))) {
r->fBottom = nextY; // update bottom
fAlloc.unalloc(rowHead);
} else {
Row* r = fRows.append();
r->fPtr = rowHead;
r->fBottom = nextY;
r->fCount = rowCount;
fTotalCount += 1 + rowCount + 1;
}
return nextY;
}
void Accumulator::copyTo(SkRegion::RunType dst[]) {
SkDEBUGCODE(SkRegion::RunType* startDst = dst;)
*dst++ = fTop;
const Row* curr = fRows.begin();
const Row* stop = fRows.end();
while (curr < stop) {
*dst++ = curr->fBottom;
memcpy(dst, curr->fPtr, curr->fCount * sizeof(SkRegion::RunType));
dst += curr->fCount;
*dst++ = SkRegion::kRunTypeSentinel;
curr += 1;
}
*dst++ = SkRegion::kRunTypeSentinel;
SkASSERT(dst - startDst == fTotalCount);
}
///////////////////////////////////////////////////////////////////////////////
template <typename T> int SkTCmp2Int(const T& a, const T& b) {
return (a < b) ? -1 : ((b < a) ? 1 : 0);
}
static inline int SkCmp32(int32_t a, int32_t b) {
return (a < b) ? -1 : ((b < a) ? 1 : 0);
}
static int compare_edgeptr(const void* p0, const void* p1) {
const VEdge* e0 = *static_cast<VEdge*const*>(p0);
const VEdge* e1 = *static_cast<VEdge*const*>(p1);
SkRegion::RunType v0 = e0->fTop;
SkRegion::RunType v1 = e1->fTop;
if (v0 == v1) {
v0 = e0->fX;
v1 = e1->fX;
}
return SkCmp32(v0, v1);
}
// fillout edge[] from rects[], sorted. Return the head, and set the tail
//
static VEdge* sort_edges(VEdge** edgePtr, VEdge edge[], const SkIRect rects[],
int rectCount, VEdge** edgeTail) {
int i;
VEdge** ptr = edgePtr;
for (int i = 0; i < rectCount; i++) {
if (!rects[i].isEmpty()) {
VEdge::SetFromRect(edge, rects[i]);
*ptr++ = edge++;
*ptr++ = edge++;
}
}
int edgeCount = ptr - edgePtr;
if (0 == edgeCount) {
// all the rects[] were empty
return NULL;
}
qsort(edgePtr, edgeCount, sizeof(*edgePtr), compare_edgeptr);
for (i = 1; i < edgeCount; i++) {
edgePtr[i - 1]->fNext = edgePtr[i];
edgePtr[i]->fPrev = edgePtr[i - 1];
}
*edgeTail = edgePtr[edgeCount - 1];
return edgePtr[0];
}
bool SkRegion::setRects(const SkIRect rects[], int rectCount) {
if (0 == rectCount) {
return this->setEmpty();
}
if (1 == rectCount) {
return this->setRect(rects[0]);
}
int edgeCount = rectCount * 2;
SkAutoMalloc memory((sizeof(VEdge) + sizeof(VEdge*)) * edgeCount);
VEdge** edgePtr = (VEdge**)memory.get();
VEdge* tail, *head = (VEdge*)(edgePtr + edgeCount);
head = sort_edges(edgePtr, head, rects, rectCount, &tail);
// check if we have no edges
if (NULL == head) {
return this->setEmpty();
}
// at this stage, we don't really care about edgeCount, or if rectCount is
// larger that it should be (since sort_edges might have skipped some
// empty rects[]). rectCount now is just used for worst-case allocations
VEdge headEdge, tailEdge;
headEdge.fPrev = NULL;
headEdge.fNext = head;
headEdge.fTop = SK_MinS32;
headEdge.fX = SK_MinS32;
head->fPrev = &headEdge;
tailEdge.fPrev = tail;
tailEdge.fNext = NULL;
tailEdge.fTop = SK_MaxS32;
tail->fNext = &tailEdge;
int32_t currY = head->fTop;
Accumulator accum(currY, rectCount);
while (head->fNext) {
VEdge* edge = head;
// accumulate the current
SkRegion::RunType nextY = accum.append(currY, edge);
// remove the old
while (edge->fTop <= currY) {
VEdge* next = edge->fNext;
if (edge->fBottom <= nextY) {
edge->removeFromList();
}
edge = next;
}
// insert (sorted) the new
while (edge->fTop == nextY) {
VEdge* next = edge->fNext;
edge->backwardsInsert();
edge = next;
}
currY = nextY;
head = headEdge.fNext;
}
SkAutoTArray<RunType> runs(accum.count());
accum.copyTo(runs.get());
return this->setRuns(runs.get(), accum.count());
}
#endif
|