1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkDeduper.h"
#include "SkImage.h"
#include "SkImageGenerator.h"
#include "SkMakeUnique.h"
#include "SkMathPriv.h"
#include "SkMatrixPriv.h"
#include "SkReadBuffer.h"
#include "SkSafeMath.h"
#include "SkStream.h"
#include "SkTypeface.h"
namespace {
// This generator intentionally should always fail on all attempts to get its pixels,
// simulating a bad or empty codec stream.
class EmptyImageGenerator final : public SkImageGenerator {
public:
EmptyImageGenerator(const SkImageInfo& info) : INHERITED(info) { }
private:
typedef SkImageGenerator INHERITED;
};
static sk_sp<SkImage> MakeEmptyImage(int width, int height) {
return SkImage::MakeFromGenerator(
skstd::make_unique<EmptyImageGenerator>(SkImageInfo::MakeN32Premul(width, height)));
}
} // anonymous namespace
SkReadBuffer::SkReadBuffer() {
fVersion = 0;
fMemoryPtr = nullptr;
fTFArray = nullptr;
fTFCount = 0;
fFactoryArray = nullptr;
fFactoryCount = 0;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}
SkReadBuffer::SkReadBuffer(const void* data, size_t size) {
fVersion = 0;
this->setMemory(data, size);
fMemoryPtr = nullptr;
fTFArray = nullptr;
fTFCount = 0;
fFactoryArray = nullptr;
fFactoryCount = 0;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}
SkReadBuffer::~SkReadBuffer() {
sk_free(fMemoryPtr);
}
void SkReadBuffer::setMemory(const void* data, size_t size) {
this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size));
if (!fError) {
fReader.setMemory(data, size);
}
}
void SkReadBuffer::setInvalid() {
if (!fError) {
// When an error is found, send the read cursor to the end of the stream
fReader.skip(fReader.available());
fError = true;
}
}
const void* SkReadBuffer::skip(size_t size) {
size_t inc = SkAlign4(size);
this->validate(inc >= size);
const void* addr = fReader.peek();
this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc));
if (fError) {
return nullptr;
}
fReader.skip(size);
return addr;
}
const void* SkReadBuffer::skip(size_t count, size_t size) {
return this->skip(SkSafeMath::Mul(count, size));
}
void SkReadBuffer::setDeserialProcs(const SkDeserialProcs& procs) {
fProcs = procs;
}
bool SkReadBuffer::readBool() {
uint32_t value = this->readUInt();
// Boolean value should be either 0 or 1
this->validate(!(value & ~1));
return value != 0;
}
SkColor SkReadBuffer::readColor() {
return this->readUInt();
}
int32_t SkReadBuffer::readInt() {
const size_t inc = sizeof(int32_t);
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
return fError ? 0 : fReader.readInt();
}
SkScalar SkReadBuffer::readScalar() {
const size_t inc = sizeof(SkScalar);
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
return fError ? 0 : fReader.readScalar();
}
uint32_t SkReadBuffer::readUInt() {
return this->readInt();
}
int32_t SkReadBuffer::read32() {
return this->readInt();
}
uint8_t SkReadBuffer::peekByte() {
if (fReader.available() <= 0) {
fError = true;
return 0;
}
return *((uint8_t*) fReader.peek());
}
bool SkReadBuffer::readPad32(void* buffer, size_t bytes) {
if (const void* src = this->skip(bytes)) {
memcpy(buffer, src, bytes);
return true;
}
return false;
}
void SkReadBuffer::readString(SkString* string) {
const size_t len = this->readUInt();
// skip over the string + '\0'
if (const char* src = this->skipT<char>(len + 1)) {
if (this->validate(src[len] == 0)) {
string->set(src, len);
return;
}
}
string->reset();
}
void SkReadBuffer::readColor4f(SkColor4f* color) {
if (!this->readPad32(color, sizeof(SkColor4f))) {
*color = {0, 0, 0, 0};
}
}
void SkReadBuffer::readPoint(SkPoint* point) {
point->fX = this->readScalar();
point->fY = this->readScalar();
}
void SkReadBuffer::readPoint3(SkPoint3* point) {
this->readPad32(point, sizeof(SkPoint3));
}
void SkReadBuffer::readMatrix(SkMatrix* matrix) {
size_t size = 0;
if (this->isValid()) {
size = SkMatrixPriv::ReadFromMemory(matrix, fReader.peek(), fReader.available());
(void)this->validate((SkAlign4(size) == size) && (0 != size));
}
if (!this->isValid()) {
matrix->reset();
}
(void)this->skip(size);
}
void SkReadBuffer::readIRect(SkIRect* rect) {
if (!this->readPad32(rect, sizeof(SkIRect))) {
rect->setEmpty();
}
}
void SkReadBuffer::readRect(SkRect* rect) {
if (!this->readPad32(rect, sizeof(SkRect))) {
rect->setEmpty();
}
}
void SkReadBuffer::readRRect(SkRRect* rrect) {
if (!this->validate(fReader.readRRect(rrect))) {
rrect->setEmpty();
}
}
void SkReadBuffer::readRegion(SkRegion* region) {
size_t size = 0;
if (!fError) {
size = region->readFromMemory(fReader.peek(), fReader.available());
if (!this->validate((SkAlign4(size) == size) && (0 != size))) {
region->setEmpty();
}
}
(void)this->skip(size);
}
void SkReadBuffer::readPath(SkPath* path) {
size_t size = 0;
if (!fError) {
size = path->readFromMemory(fReader.peek(), fReader.available());
if (!this->validate((SkAlign4(size) == size) && (0 != size))) {
path->reset();
}
}
(void)this->skip(size);
}
bool SkReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
const uint32_t count = this->readUInt();
return this->validate(size == count) &&
this->readPad32(value, SkSafeMath::Mul(size, elementSize));
}
bool SkReadBuffer::readByteArray(void* value, size_t size) {
return this->readArray(value, size, sizeof(uint8_t));
}
bool SkReadBuffer::readColorArray(SkColor* colors, size_t size) {
return this->readArray(colors, size, sizeof(SkColor));
}
bool SkReadBuffer::readColor4fArray(SkColor4f* colors, size_t size) {
return this->readArray(colors, size, sizeof(SkColor4f));
}
bool SkReadBuffer::readIntArray(int32_t* values, size_t size) {
return this->readArray(values, size, sizeof(int32_t));
}
bool SkReadBuffer::readPointArray(SkPoint* points, size_t size) {
return this->readArray(points, size, sizeof(SkPoint));
}
bool SkReadBuffer::readScalarArray(SkScalar* values, size_t size) {
return this->readArray(values, size, sizeof(SkScalar));
}
uint32_t SkReadBuffer::getArrayCount() {
const size_t inc = sizeof(uint32_t);
fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
return fError ? 0 : *(uint32_t*)fReader.peek();
}
sk_sp<SkImage> SkReadBuffer::readImage() {
if (fInflator) {
SkImage* img = fInflator->getImage(this->read32());
return img ? sk_ref_sp(img) : nullptr;
}
int width = this->read32();
int height = this->read32();
if (width <= 0 || height <= 0) { // SkImage never has a zero dimension
this->validate(false);
return nullptr;
}
/*
* What follows is a 32bit encoded size.
* 0 : failure, nothing else to do
* <0 : negative (int32_t) of a custom encoded blob using SerialProcs
* >0 : standard encoded blob size (use MakeFromEncoded)
*/
int32_t encoded_size = this->read32();
if (encoded_size == 0) {
// The image could not be encoded at serialization time - return an empty placeholder.
return MakeEmptyImage(width, height);
}
if (encoded_size == 1) {
// legacy check (we stopped writing this for "raw" images Nov-2017)
this->validate(false);
return nullptr;
}
size_t size = SkAbs32(encoded_size);
sk_sp<SkData> data = SkData::MakeUninitialized(size);
if (!this->readPad32(data->writable_data(), size)) {
this->validate(false);
return nullptr;
}
int32_t originX = this->read32();
int32_t originY = this->read32();
if (originX < 0 || originY < 0) {
this->validate(false);
return nullptr;
}
sk_sp<SkImage> image;
if (encoded_size < 0) { // custom encoded, need serial proc
if (fProcs.fImageProc) {
image = fProcs.fImageProc(data->data(), data->size(), fProcs.fImageCtx);
} else {
// Nothing to do (no client proc), but since we've already "read" the custom data,
// wee just leave image as nullptr.
}
} else {
SkIRect subset = SkIRect::MakeXYWH(originX, originY, width, height);
image = SkImage::MakeFromEncoded(std::move(data), &subset);
}
// Question: are we correct to return an "empty" image instead of nullptr, if the decoder
// failed for some reason?
return image ? image : MakeEmptyImage(width, height);
}
sk_sp<SkTypeface> SkReadBuffer::readTypeface() {
if (fInflator) {
return sk_ref_sp(fInflator->getTypeface(this->read32()));
}
// Read 32 bits (signed)
// 0 -- return null (default font)
// >0 -- index
// <0 -- custom (serial procs) : negative size in bytes
int32_t index = this->read32();
if (index == 0) {
return nullptr;
} else if (index > 0) {
if (!this->validate(index <= fTFCount)) {
return nullptr;
}
return sk_ref_sp(fTFArray[index - 1]);
} else { // custom
size_t size = sk_negate_to_size_t(index);
const void* data = this->skip(size);
if (!this->validate(data != nullptr && fProcs.fTypefaceProc)) {
return nullptr;
}
return fProcs.fTypefaceProc(data, size, fProcs.fTypefaceCtx);
}
}
SkFlattenable* SkReadBuffer::readFlattenable(SkFlattenable::Type ft) {
SkFlattenable::Factory factory = nullptr;
if (fInflator) {
factory = fInflator->getFactory(this->read32());
if (!factory) {
return nullptr;
}
} else if (fFactoryCount > 0) {
int32_t index = this->read32();
if (0 == index || !this->isValid()) {
return nullptr; // writer failed to give us the flattenable
}
index -= 1; // we stored the index-base-1
if ((unsigned)index >= (unsigned)fFactoryCount) {
this->validate(false);
return nullptr;
}
factory = fFactoryArray[index];
} else {
SkString name;
if (this->peekByte()) {
// If the first byte is non-zero, the flattenable is specified by a string.
this->readString(&name);
// Add the string to the dictionary.
fFlattenableDict.set(fFlattenableDict.count() + 1, name);
} else {
// Read the index. We are guaranteed that the first byte
// is zeroed, so we must shift down a byte.
uint32_t index = this->readUInt() >> 8;
if (index == 0) {
return nullptr; // writer failed to give us the flattenable
}
SkString* namePtr = fFlattenableDict.find(index);
if (!this->validate(namePtr != nullptr)) {
return nullptr;
}
name = *namePtr;
}
// Check if a custom Factory has been specified for this flattenable.
if (!(factory = this->getCustomFactory(name))) {
// If there is no custom Factory, check for a default.
if (!(factory = SkFlattenable::NameToFactory(name.c_str()))) {
return nullptr; // writer failed to give us the flattenable
}
}
}
// if we get here, factory may still be null, but if that is the case, the
// failure was ours, not the writer.
sk_sp<SkFlattenable> obj;
uint32_t sizeRecorded = this->read32();
if (factory) {
size_t offset = fReader.offset();
obj = (*factory)(*this);
// check that we read the amount we expected
size_t sizeRead = fReader.offset() - offset;
if (sizeRecorded != sizeRead) {
this->validate(false);
return nullptr;
}
if (obj && obj->getFlattenableType() != ft) {
this->validate(false);
return nullptr;
}
} else {
// we must skip the remaining data
fReader.skip(sizeRecorded);
}
return obj.release();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
int32_t SkReadBuffer::checkInt(int32_t min, int32_t max) {
SkASSERT(min <= max);
int32_t value = this->read32();
if (value < min || value > max) {
this->validate(false);
value = min;
}
return value;
}
SkFilterQuality SkReadBuffer::checkFilterQuality() {
return this->checkRange<SkFilterQuality>(kNone_SkFilterQuality, kLast_SkFilterQuality);
}
|