aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkRRect.cpp
blob: 63fd8ccfcde569bfa349ca13e91dbda409de6738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include <cmath>
#include "SkRRect.h"
#include "SkBuffer.h"
#include "SkMatrix.h"
#include "SkScaleToSides.h"

///////////////////////////////////////////////////////////////////////////////

void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
    fRect = rect;
    fRect.sort();

    if (fRect.isEmpty() || !fRect.isFinite()) {
        this->setEmpty();
        return;
    }

    if (!SkScalarsAreFinite(xRad, yRad)) {
        xRad = yRad = 0;    // devolve into a simple rect
    }
    if (xRad <= 0 || yRad <= 0) {
        // all corners are square in this case
        this->setRect(rect);
        return;
    }

    if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) {
        SkScalar scale = SkMinScalar(fRect.width() / (xRad + xRad), fRect.height() / (yRad + yRad));
        SkASSERT(scale < SK_Scalar1);
        xRad *= scale;
        yRad *= scale;
    }

    for (int i = 0; i < 4; ++i) {
        fRadii[i].set(xRad, yRad);
    }
    fType = kSimple_Type;
    if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
        fType = kOval_Type;
        // TODO: assert that all the x&y radii are already W/2 & H/2
    }

    SkASSERT(this->isValid());
}

void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
                           SkScalar rightRad, SkScalar bottomRad) {
    fRect = rect;
    fRect.sort();

    if (fRect.isEmpty() || !fRect.isFinite()) {
        this->setEmpty();
        return;
    }

    const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
    if (!SkScalarsAreFinite(array, 4)) {
        this->setRect(rect);    // devolve into a simple rect
        return;
    }

    leftRad = SkMaxScalar(leftRad, 0);
    topRad = SkMaxScalar(topRad, 0);
    rightRad = SkMaxScalar(rightRad, 0);
    bottomRad = SkMaxScalar(bottomRad, 0);

    SkScalar scale = SK_Scalar1;
    if (leftRad + rightRad > fRect.width()) {
        scale = fRect.width() / (leftRad + rightRad);
    }
    if (topRad + bottomRad > fRect.height()) {
        scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad));
    }

    if (scale < SK_Scalar1) {
        leftRad *= scale;
        topRad *= scale;
        rightRad *= scale;
        bottomRad *= scale;
    }

    if (leftRad == rightRad && topRad == bottomRad) {
        if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) {
            fType = kOval_Type;
        } else if (0 == leftRad || 0 == topRad) {
            // If the left and (by equality check above) right radii are zero then it is a rect.
            // Same goes for top/bottom.
            fType = kRect_Type;
            leftRad = 0;
            topRad = 0;
            rightRad = 0;
            bottomRad = 0;
        } else {
            fType = kSimple_Type;
        }
    } else {
        fType = kNinePatch_Type;
    }

    fRadii[kUpperLeft_Corner].set(leftRad, topRad);
    fRadii[kUpperRight_Corner].set(rightRad, topRad);
    fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
    fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);

    SkASSERT(this->isValid());
}

// These parameters intentionally double. Apropos crbug.com/463920, if one of the
// radii is huge while the other is small, single precision math can completely
// miss the fact that a scale is required.
static double compute_min_scale(double rad1, double rad2, double limit, double curMin) {
    if ((rad1 + rad2) > limit) {
        return SkTMin(curMin, limit / (rad1 + rad2));
    }
    return curMin;
}

void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
    fRect = rect;
    fRect.sort();

    if (fRect.isEmpty() || !fRect.isFinite()) {
        this->setEmpty();
        return;
    }

    if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
        this->setRect(rect);    // devolve into a simple rect
        return;
    }

    memcpy(fRadii, radii, sizeof(fRadii));

    bool allCornersSquare = true;

    // Clamp negative radii to zero
    for (int i = 0; i < 4; ++i) {
        if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
            // In this case we are being a little fast & loose. Since one of
            // the radii is 0 the corner is square. However, the other radii
            // could still be non-zero and play in the global scale factor
            // computation.
            fRadii[i].fX = 0;
            fRadii[i].fY = 0;
        } else {
            allCornersSquare = false;
        }
    }

    if (allCornersSquare) {
        this->setRect(rect);
        return;
    }

    this->scaleRadii();
}

void SkRRect::scaleRadii() {

    // Proportionally scale down all radii to fit. Find the minimum ratio
    // of a side and the radii on that side (for all four sides) and use
    // that to scale down _all_ the radii. This algorithm is from the
    // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
    // Curves:
    // "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
    //   Si is the sum of the two corresponding radii of the corners on side i,
    //   and Ltop = Lbottom = the width of the box,
    //   and Lleft = Lright = the height of the box.
    // If f < 1, then all corner radii are reduced by multiplying them by f."
    double scale = 1.0;

    // The sides of the rectangle may be larger than a float.
    double width = (double)fRect.fRight - (double)fRect.fLeft;
    double height = (double)fRect.fBottom - (double)fRect.fTop;
    scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width,  scale);
    scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale);
    scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width,  scale);
    scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale);

    if (scale < 1.0) {
        SkScaleToSides::AdjustRadii(width,  scale, &fRadii[0].fX, &fRadii[1].fX);
        SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY);
        SkScaleToSides::AdjustRadii(width,  scale, &fRadii[2].fX, &fRadii[3].fX);
        SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY);
    }

    // At this point we're either oval, simple, or complex (not empty or rect).
    this->computeType();

    SkASSERT(this->isValid());
}

// This method determines if a point known to be inside the RRect's bounds is
// inside all the corners.
bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const {
    SkPoint canonicalPt; // (x,y) translated to one of the quadrants
    int index;

    if (kOval_Type == this->type()) {
        canonicalPt.set(x - fRect.centerX(), y - fRect.centerY());
        index = kUpperLeft_Corner;  // any corner will do in this case
    } else {
        if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX &&
            y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) {
            // UL corner
            index = kUpperLeft_Corner;
            canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX),
                            y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY));
            SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0);
        } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX &&
                   y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) {
            // LL corner
            index = kLowerLeft_Corner;
            canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX),
                            y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY));
            SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0);
        } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX &&
                   y < fRect.fTop + fRadii[kUpperRight_Corner].fY) {
            // UR corner
            index = kUpperRight_Corner;
            canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX),
                            y - (fRect.fTop + fRadii[kUpperRight_Corner].fY));
            SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0);
        } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX &&
                   y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) {
            // LR corner
            index = kLowerRight_Corner;
            canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX),
                            y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY));
            SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0);
        } else {
            // not in any of the corners
            return true;
        }
    }

    // A point is in an ellipse (in standard position) if:
    //      x^2     y^2
    //     ----- + ----- <= 1
    //      a^2     b^2
    // or :
    //     b^2*x^2 + a^2*y^2 <= (ab)^2
    SkScalar dist =  SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) +
                     SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX);
    return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY);
}

bool SkRRect::allCornersCircular(SkScalar tolerance) const {
    return SkScalarNearlyEqual(fRadii[0].fX, fRadii[0].fY, tolerance) &&
           SkScalarNearlyEqual(fRadii[1].fX, fRadii[1].fY, tolerance) &&
           SkScalarNearlyEqual(fRadii[2].fX, fRadii[2].fY, tolerance) &&
           SkScalarNearlyEqual(fRadii[3].fX, fRadii[3].fY, tolerance);
}

bool SkRRect::contains(const SkRect& rect) const {
    if (!this->getBounds().contains(rect)) {
        // If 'rect' isn't contained by the RR's bounds then the
        // RR definitely doesn't contain it
        return false;
    }

    if (this->isRect()) {
        // the prior test was sufficient
        return true;
    }

    // At this point we know all four corners of 'rect' are inside the
    // bounds of of this RR. Check to make sure all the corners are inside
    // all the curves
    return this->checkCornerContainment(rect.fLeft, rect.fTop) &&
           this->checkCornerContainment(rect.fRight, rect.fTop) &&
           this->checkCornerContainment(rect.fRight, rect.fBottom) &&
           this->checkCornerContainment(rect.fLeft, rect.fBottom);
}

static bool radii_are_nine_patch(const SkVector radii[4]) {
    return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX &&
           radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY &&
           radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX &&
           radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY;
}

// There is a simplified version of this method in setRectXY
void SkRRect::computeType() {
    struct Validator {
        Validator(const SkRRect* r) : fR(r) {}
        ~Validator() { SkASSERT(fR->isValid()); }
        const SkRRect* fR;
    } autoValidate(this);

    if (fRect.isEmpty()) {
        fType = kEmpty_Type;
        return;
    }

    bool allRadiiEqual = true; // are all x radii equal and all y radii?
    bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY;

    for (int i = 1; i < 4; ++i) {
        if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
            // if either radius is zero the corner is square so both have to
            // be non-zero to have a rounded corner
            allCornersSquare = false;
        }
        if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
            allRadiiEqual = false;
        }
    }

    if (allCornersSquare) {
        fType = kRect_Type;
        return;
    }

    if (allRadiiEqual) {
        if (fRadii[0].fX >= SkScalarHalf(fRect.width()) &&
            fRadii[0].fY >= SkScalarHalf(fRect.height())) {
            fType = kOval_Type;
        } else {
            fType = kSimple_Type;
        }
        return;
    }

    if (radii_are_nine_patch(fRadii)) {
        fType = kNinePatch_Type;
    } else {
        fType = kComplex_Type;
    }
}

static bool matrix_only_scale_and_translate(const SkMatrix& matrix) {
    const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask
                                    | SkMatrix::kPerspective_Mask);
    return (matrix.getType() & m) == 0;
}

bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const {
    if (nullptr == dst) {
        return false;
    }

    // Assert that the caller is not trying to do this in place, which
    // would violate const-ness. Do not return false though, so that
    // if they know what they're doing and want to violate it they can.
    SkASSERT(dst != this);

    if (matrix.isIdentity()) {
        *dst = *this;
        return true;
    }

    // If transform supported 90 degree rotations (which it could), we could
    // use SkMatrix::rectStaysRect() to check for a valid transformation.
    if (!matrix_only_scale_and_translate(matrix)) {
        return false;
    }

    SkRect newRect;
    if (!matrix.mapRect(&newRect, fRect)) {
        return false;
    }

    // The matrix may have scaled us to zero (or due to float madness, we now have collapsed
    // some dimension of the rect, so we need to check for that.
    if (newRect.isEmpty()) {
        dst->setEmpty();
        return true;
    }

    // At this point, this is guaranteed to succeed, so we can modify dst.
    dst->fRect = newRect;

    // Since the only transforms that were allowed are scale and translate, the type
    // remains unchanged.
    dst->fType = fType;

    if (kOval_Type == fType) {
        for (int i = 0; i < 4; ++i) {
            dst->fRadii[i].fX = SkScalarHalf(newRect.width());
            dst->fRadii[i].fY = SkScalarHalf(newRect.height());
        }
        SkASSERT(dst->isValid());
        return true;
    }

    // Now scale each corner
    SkScalar xScale = matrix.getScaleX();
    const bool flipX = xScale < 0;
    if (flipX) {
        xScale = -xScale;
    }
    SkScalar yScale = matrix.getScaleY();
    const bool flipY = yScale < 0;
    if (flipY) {
        yScale = -yScale;
    }

    // Scale the radii without respecting the flip.
    for (int i = 0; i < 4; ++i) {
        dst->fRadii[i].fX = fRadii[i].fX * xScale;
        dst->fRadii[i].fY = fRadii[i].fY * yScale;
    }

    // Now swap as necessary.
    if (flipX) {
        if (flipY) {
            // Swap with opposite corners
            SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]);
            SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]);
        } else {
            // Only swap in x
            SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]);
            SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]);
        }
    } else if (flipY) {
        // Only swap in y
        SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]);
        SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]);
    }

    if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) {
        return false;
    }

    dst->scaleRadii();

    return true;
}

///////////////////////////////////////////////////////////////////////////////

void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
    const SkRect r = fRect.makeInset(dx, dy);

    if (r.isEmpty()) {
        dst->setEmpty();
        return;
    }

    SkVector radii[4];
    memcpy(radii, fRadii, sizeof(radii));
    for (int i = 0; i < 4; ++i) {
        if (radii[i].fX) {
            radii[i].fX -= dx;
        }
        if (radii[i].fY) {
            radii[i].fY -= dy;
        }
    }
    dst->setRectRadii(r, radii);
}

///////////////////////////////////////////////////////////////////////////////

size_t SkRRect::writeToMemory(void* buffer) const {
    // Serialize only the rect and corners, but not the derived type tag.
    memcpy(buffer, this, kSizeInMemory);
    return kSizeInMemory;
}

void SkRRect::writeToBuffer(SkWBuffer* buffer) const {
    // Serialize only the rect and corners, but not the derived type tag.
    buffer->write(this, kSizeInMemory);
}

size_t SkRRect::readFromMemory(const void* buffer, size_t length) {
    if (length < kSizeInMemory) {
        return 0;
    }
    // Note that the buffer may be smaller than SkRRect. It is important not to access
    // bufferAsRRect->fType.
    const SkRRect* bufferAsRRect = reinterpret_cast<const SkRRect*>(buffer);
    if (!AreRectAndRadiiValid(bufferAsRRect->fRect, bufferAsRRect->fRadii)) {
        return 0;
    }
    // Deserialize rect and corners, then rederive the type tag.
    memcpy(this, buffer, kSizeInMemory);
    this->computeType();

    return kSizeInMemory;
}

bool SkRRect::readFromBuffer(SkRBuffer* buffer) {
    if (buffer->available() < kSizeInMemory) {
        return false;
    }
    SkRRect readData;
    buffer->read(&readData, kSizeInMemory);
    if (!AreRectAndRadiiValid(readData.fRect, readData.fRadii)) {
        return false;
    }
    memcpy(this, &readData, kSizeInMemory);
    this->computeType();
    return true;
}

#include "SkString.h"
#include "SkStringUtils.h"

void SkRRect::dump(bool asHex) const {
    SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;

    fRect.dump(asHex);
    SkString line("const SkPoint corners[] = {\n");
    for (int i = 0; i < 4; ++i) {
        SkString strX, strY;
        SkAppendScalar(&strX, fRadii[i].x(), asType);
        SkAppendScalar(&strY, fRadii[i].y(), asType);
        line.appendf("    { %s, %s },", strX.c_str(), strY.c_str());
        if (asHex) {
            line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y());
        }
        line.append("\n");
    }
    line.append("};");
    SkDebugf("%s\n", line.c_str());
}

///////////////////////////////////////////////////////////////////////////////

/**
 *  We need all combinations of predicates to be true to have a "safe" radius value.
 */
static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) {
    return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) &&
           rad >= 0;
}

bool SkRRect::isValid() const {
    if (!AreRectAndRadiiValid(fRect, fRadii)) {
        return false;
    }

    bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY);
    bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY);
    bool allRadiiSame = true;

    for (int i = 1; i < 4; ++i) {
        if (0 != fRadii[i].fX || 0 != fRadii[i].fY) {
            allRadiiZero = false;
        }

        if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
            allRadiiSame = false;
        }

        if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
            allCornersSquare = false;
        }
    }
    bool patchesOfNine = radii_are_nine_patch(fRadii);

    if (fType < 0 || fType > kLastType) {
        return false;
    }

    switch (fType) {
        case kEmpty_Type:
            if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
                return false;
            }
            break;
        case kRect_Type:
            if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
                return false;
            }
            break;
        case kOval_Type:
            if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
                return false;
            }

            for (int i = 0; i < 4; ++i) {
                if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) ||
                    !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) {
                    return false;
                }
            }
            break;
        case kSimple_Type:
            if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
                return false;
            }
            break;
        case kNinePatch_Type:
            if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
                !patchesOfNine) {
                return false;
            }
            break;
        case kComplex_Type:
            if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
                patchesOfNine) {
                return false;
            }
            break;
    }

    return true;
}

bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) {
    if (!rect.isFinite()) {
        return false;
    }
    for (int i = 0; i < 4; ++i) {
        if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) ||
            !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) {
            return false;
        }
    }
    return true;
}
///////////////////////////////////////////////////////////////////////////////