1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBuffer.h"
#include "SkNx.h"
#include "SkOnce.h"
#include "SkPath.h"
#include "SkPathRef.h"
#include "SkPathPriv.h"
#include "SkSafeMath.h"
// Conic weights must be 0 < weight <= finite
static bool validate_conic_weights(const SkScalar weights[], int count) {
for (int i = 0; i < count; ++i) {
if (weights[i] <= 0 || !SkScalarIsFinite(weights[i])) {
return false;
}
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
SkPathRef::Editor::Editor(sk_sp<SkPathRef>* pathRef,
int incReserveVerbs,
int incReservePoints)
{
if ((*pathRef)->unique()) {
(*pathRef)->incReserve(incReserveVerbs, incReservePoints);
} else {
SkPathRef* copy = new SkPathRef;
copy->copy(**pathRef, incReserveVerbs, incReservePoints);
pathRef->reset(copy);
}
fPathRef = pathRef->get();
fPathRef->callGenIDChangeListeners();
fPathRef->fGenerationID = 0;
SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);)
}
//////////////////////////////////////////////////////////////////////////////
SkPathRef::~SkPathRef() {
// Deliberately don't validate() this path ref, otherwise there's no way
// to read one that's not valid and then free its memory without asserting.
this->callGenIDChangeListeners();
sk_free(fPoints);
SkDEBUGCODE(fPoints = nullptr;)
SkDEBUGCODE(fVerbs = nullptr;)
SkDEBUGCODE(fVerbCnt = 0x9999999;)
SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
SkDEBUGCODE(fEditorsAttached = 0x7777777;)
}
static SkPathRef* gEmpty = nullptr;
SkPathRef* SkPathRef::CreateEmpty() {
static SkOnce once;
once([]{
gEmpty = new SkPathRef;
gEmpty->computeBounds(); // Avoids races later to be the first to do this.
});
return SkRef(gEmpty);
}
static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW,
unsigned* start) {
int inStart = *start;
int rm = 0;
if (isRRect) {
// Degenerate rrect indices to oval indices and remember the remainder.
// Ovals have one index per side whereas rrects have two.
rm = inStart & 0b1;
inStart /= 2;
}
// Is the antidiagonal non-zero (otherwise the diagonal is zero)
int antiDiag;
// Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative
int topNeg;
// Are the two non-zero diagonal or antidiagonal values the same sign.
int sameSign;
if (matrix.get(SkMatrix::kMScaleX) != 0) {
antiDiag = 0b00;
if (matrix.get(SkMatrix::kMScaleX) > 0) {
topNeg = 0b00;
sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00;
} else {
topNeg = 0b10;
sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01;
}
} else {
antiDiag = 0b01;
if (matrix.get(SkMatrix::kMSkewX) > 0) {
topNeg = 0b00;
sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00;
} else {
topNeg = 0b10;
sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01;
}
}
if (sameSign != antiDiag) {
// This is a rotation (and maybe scale). The direction is unchanged.
// Trust me on the start computation (or draw yourself some pictures)
*start = (inStart + 4 - (topNeg | antiDiag)) % 4;
SkASSERT(*start < 4);
if (isRRect) {
*start = 2 * *start + rm;
}
} else {
// This is a mirror (and maybe scale). The direction is reversed.
*isCCW = !*isCCW;
// Trust me on the start computation (or draw yourself some pictures)
*start = (6 + (topNeg | antiDiag) - inStart) % 4;
SkASSERT(*start < 4);
if (isRRect) {
*start = 2 * *start + (rm ? 0 : 1);
}
}
}
void SkPathRef::CreateTransformedCopy(sk_sp<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix) {
SkDEBUGCODE(src.validate();)
if (matrix.isIdentity()) {
if (dst->get() != &src) {
src.ref();
dst->reset(const_cast<SkPathRef*>(&src));
SkDEBUGCODE((*dst)->validate();)
}
return;
}
if (!(*dst)->unique()) {
dst->reset(new SkPathRef);
}
if (dst->get() != &src) {
(*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
sk_careful_memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(),
src.fVerbCnt * sizeof(uint8_t));
(*dst)->fConicWeights = src.fConicWeights;
}
SkASSERT((*dst)->countPoints() == src.countPoints());
SkASSERT((*dst)->countVerbs() == src.countVerbs());
SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count());
// Need to check this here in case (&src == dst)
bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1;
matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
/*
* Here we optimize the bounds computation, by noting if the bounds are
* already known, and if so, we just transform those as well and mark
* them as "known", rather than force the transformed path to have to
* recompute them.
*
* Special gotchas if the path is effectively empty (<= 1 point) or
* if it is non-finite. In those cases bounds need to stay empty,
* regardless of the matrix.
*/
if (canXformBounds) {
(*dst)->fBoundsIsDirty = false;
if (src.fIsFinite) {
matrix.mapRect(&(*dst)->fBounds, src.fBounds);
if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) {
(*dst)->fBounds.setEmpty();
}
} else {
(*dst)->fIsFinite = false;
(*dst)->fBounds.setEmpty();
}
} else {
(*dst)->fBoundsIsDirty = true;
}
(*dst)->fSegmentMask = src.fSegmentMask;
// It's an oval only if it stays a rect.
bool rectStaysRect = matrix.rectStaysRect();
(*dst)->fIsOval = src.fIsOval && rectStaysRect;
(*dst)->fIsRRect = src.fIsRRect && rectStaysRect;
if ((*dst)->fIsOval || (*dst)->fIsRRect) {
unsigned start = src.fRRectOrOvalStartIdx;
bool isCCW = SkToBool(src.fRRectOrOvalIsCCW);
transform_dir_and_start(matrix, (*dst)->fIsRRect, &isCCW, &start);
(*dst)->fRRectOrOvalIsCCW = isCCW;
(*dst)->fRRectOrOvalStartIdx = start;
}
SkDEBUGCODE((*dst)->validate();)
}
static bool validate_verb_sequence(const uint8_t verbs[], int vCount) {
// verbs are stored backwards, but we need to visit them in logical order to determine if
// they form a valid sequence.
bool needsMoveTo = true;
bool invalidSequence = false;
for (int i = vCount - 1; i >= 0; --i) {
switch (verbs[i]) {
case SkPath::kMove_Verb:
needsMoveTo = false;
break;
case SkPath::kLine_Verb:
case SkPath::kQuad_Verb:
case SkPath::kConic_Verb:
case SkPath::kCubic_Verb:
invalidSequence |= needsMoveTo;
break;
case SkPath::kClose_Verb:
needsMoveTo = true;
break;
default:
return false; // unknown verb
}
}
return !invalidSequence;
}
// Given the verb array, deduce the required number of pts and conics,
// or if an invalid verb is encountered, return false.
static bool deduce_pts_conics(const uint8_t verbs[], int vCount, int* ptCountPtr,
int* conicCountPtr) {
// When there is at least one verb, the first is required to be kMove_Verb.
if (0 < vCount && verbs[vCount-1] != SkPath::kMove_Verb) {
return false;
}
SkSafeMath safe;
int ptCount = 0;
int conicCount = 0;
for (int i = 0; i < vCount; ++i) {
switch (verbs[i]) {
case SkPath::kMove_Verb:
case SkPath::kLine_Verb:
ptCount = safe.addInt(ptCount, 1);
break;
case SkPath::kConic_Verb:
conicCount += 1;
// fall-through
case SkPath::kQuad_Verb:
ptCount = safe.addInt(ptCount, 2);
break;
case SkPath::kCubic_Verb:
ptCount = safe.addInt(ptCount, 3);
break;
case SkPath::kClose_Verb:
break;
default:
return false;
}
}
if (!safe) {
return false;
}
*ptCountPtr = ptCount;
*conicCountPtr = conicCount;
return true;
}
SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) {
std::unique_ptr<SkPathRef> ref(new SkPathRef);
int32_t packed;
if (!buffer->readS32(&packed)) {
return nullptr;
}
ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1;
int32_t verbCount, pointCount, conicCount;
if (!buffer->readU32(&(ref->fGenerationID)) ||
!buffer->readS32(&verbCount) || (verbCount < 0) ||
!buffer->readS32(&pointCount) || (pointCount < 0) ||
!buffer->readS32(&conicCount) || (conicCount < 0))
{
return nullptr;
}
uint64_t pointSize64 = sk_64_mul(pointCount, sizeof(SkPoint));
uint64_t conicSize64 = sk_64_mul(conicCount, sizeof(SkScalar));
if (!SkTFitsIn<size_t>(pointSize64) || !SkTFitsIn<size_t>(conicSize64)) {
return nullptr;
}
size_t verbSize = verbCount * sizeof(uint8_t);
size_t pointSize = SkToSizeT(pointSize64);
size_t conicSize = SkToSizeT(conicSize64);
{
uint64_t requiredBufferSize = sizeof(SkRect);
requiredBufferSize += verbSize;
requiredBufferSize += pointSize;
requiredBufferSize += conicSize;
if (buffer->available() < requiredBufferSize) {
return nullptr;
}
}
ref->resetToSize(verbCount, pointCount, conicCount);
SkASSERT(verbCount == ref->countVerbs());
SkASSERT(pointCount == ref->countPoints());
SkASSERT(conicCount == ref->fConicWeights.count());
if (!buffer->read(ref->verbsMemWritable(), verbSize) ||
!buffer->read(ref->fPoints, pointSize) ||
!buffer->read(ref->fConicWeights.begin(), conicSize) ||
!buffer->read(&ref->fBounds, sizeof(SkRect))) {
return nullptr;
}
// Check that the verbs are valid, and imply the correct number of pts and conics
{
int pCount, cCount;
if (!validate_verb_sequence(ref->verbsMemBegin(), ref->countVerbs())) {
return nullptr;
}
if (!deduce_pts_conics(ref->verbsMemBegin(), ref->countVerbs(), &pCount, &cCount) ||
pCount != ref->countPoints() || cCount != ref->fConicWeights.count()) {
return nullptr;
}
if (!validate_conic_weights(ref->fConicWeights.begin(), ref->fConicWeights.count())) {
return nullptr;
}
// Check that the bounds match the serialized bounds.
SkRect bounds;
if (ComputePtBounds(&bounds, *ref) != SkToBool(ref->fIsFinite) || bounds != ref->fBounds) {
return nullptr;
}
// call this after validate_verb_sequence, since it relies on valid verbs
ref->fSegmentMask = ref->computeSegmentMask();
}
ref->fBoundsIsDirty = false;
return ref.release();
}
void SkPathRef::Rewind(sk_sp<SkPathRef>* pathRef) {
if ((*pathRef)->unique()) {
SkDEBUGCODE((*pathRef)->validate();)
(*pathRef)->callGenIDChangeListeners();
(*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite
(*pathRef)->fVerbCnt = 0;
(*pathRef)->fPointCnt = 0;
(*pathRef)->fFreeSpace = (*pathRef)->currSize();
(*pathRef)->fGenerationID = 0;
(*pathRef)->fConicWeights.rewind();
(*pathRef)->fSegmentMask = 0;
(*pathRef)->fIsOval = false;
(*pathRef)->fIsRRect = false;
SkDEBUGCODE((*pathRef)->validate();)
} else {
int oldVCnt = (*pathRef)->countVerbs();
int oldPCnt = (*pathRef)->countPoints();
pathRef->reset(new SkPathRef);
(*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt);
}
}
bool SkPathRef::operator== (const SkPathRef& ref) const {
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(ref.validate();)
// We explicitly check fSegmentMask as a quick-reject. We could skip it,
// since it is only a cache of info in the fVerbs, but its a fast way to
// notice a difference
if (fSegmentMask != ref.fSegmentMask) {
return false;
}
bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
#ifdef SK_RELEASE
if (genIDMatch) {
return true;
}
#endif
if (fPointCnt != ref.fPointCnt ||
fVerbCnt != ref.fVerbCnt) {
SkASSERT(!genIDMatch);
return false;
}
if (0 == ref.fVerbCnt) {
SkASSERT(0 == ref.fPointCnt);
return true;
}
SkASSERT(this->verbsMemBegin() && ref.verbsMemBegin());
if (0 != memcmp(this->verbsMemBegin(),
ref.verbsMemBegin(),
ref.fVerbCnt * sizeof(uint8_t))) {
SkASSERT(!genIDMatch);
return false;
}
SkASSERT(this->points() && ref.points());
if (0 != memcmp(this->points(),
ref.points(),
ref.fPointCnt * sizeof(SkPoint))) {
SkASSERT(!genIDMatch);
return false;
}
if (fConicWeights != ref.fConicWeights) {
SkASSERT(!genIDMatch);
return false;
}
return true;
}
void SkPathRef::writeToBuffer(SkWBuffer* buffer) const {
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(size_t beforePos = buffer->pos();)
// Call getBounds() to ensure (as a side-effect) that fBounds
// and fIsFinite are computed.
const SkRect& bounds = this->getBounds();
// We store fSegmentMask for older readers, but current readers can't trust it, so they
// don't read it.
int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) |
(fSegmentMask << kSegmentMask_SerializationShift);
buffer->write32(packed);
// TODO: write gen ID here. Problem: We don't know if we're cross process or not from
// SkWBuffer. Until this is fixed we write 0.
buffer->write32(0);
buffer->write32(fVerbCnt);
buffer->write32(fPointCnt);
buffer->write32(fConicWeights.count());
buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t));
buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
buffer->write(fConicWeights.begin(), fConicWeights.bytes());
buffer->write(&bounds, sizeof(bounds));
SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
}
uint32_t SkPathRef::writeSize() const {
return uint32_t(5 * sizeof(uint32_t) +
fVerbCnt * sizeof(uint8_t) +
fPointCnt * sizeof(SkPoint) +
fConicWeights.bytes() +
sizeof(SkRect));
}
void SkPathRef::copy(const SkPathRef& ref,
int additionalReserveVerbs,
int additionalReservePoints) {
SkDEBUGCODE(this->validate();)
this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(),
additionalReserveVerbs, additionalReservePoints);
sk_careful_memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt*sizeof(uint8_t));
sk_careful_memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint));
fConicWeights = ref.fConicWeights;
fBoundsIsDirty = ref.fBoundsIsDirty;
if (!fBoundsIsDirty) {
fBounds = ref.fBounds;
fIsFinite = ref.fIsFinite;
}
fSegmentMask = ref.fSegmentMask;
fIsOval = ref.fIsOval;
fIsRRect = ref.fIsRRect;
fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW;
fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx;
SkDEBUGCODE(this->validate();)
}
unsigned SkPathRef::computeSegmentMask() const {
const uint8_t* verbs = this->verbsMemBegin();
unsigned mask = 0;
for (int i = this->countVerbs() - 1; i >= 0; --i) {
switch (verbs[i]) {
case SkPath::kLine_Verb: mask |= SkPath::kLine_SegmentMask; break;
case SkPath::kQuad_Verb: mask |= SkPath::kQuad_SegmentMask; break;
case SkPath::kConic_Verb: mask |= SkPath::kConic_SegmentMask; break;
case SkPath::kCubic_Verb: mask |= SkPath::kCubic_SegmentMask; break;
default: break;
}
}
return mask;
}
void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const {
const SkScalar* inValues = &ending.getPoints()->fX;
SkScalar* outValues = &out->getPoints()->fX;
int count = out->countPoints() * 2;
for (int index = 0; index < count; ++index) {
outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight);
}
out->fBoundsIsDirty = true;
out->fIsOval = false;
out->fIsRRect = false;
}
SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb,
int numVbs,
SkScalar** weights) {
// This value is just made-up for now. When count is 4, calling memset was much
// slower than just writing the loop. This seems odd, and hopefully in the
// future this will appear to have been a fluke...
static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16;
SkDEBUGCODE(this->validate();)
int pCnt;
bool dirtyAfterEdit = true;
switch (verb) {
case SkPath::kMove_Verb:
pCnt = numVbs;
dirtyAfterEdit = false;
break;
case SkPath::kLine_Verb:
fSegmentMask |= SkPath::kLine_SegmentMask;
pCnt = numVbs;
break;
case SkPath::kQuad_Verb:
fSegmentMask |= SkPath::kQuad_SegmentMask;
pCnt = 2 * numVbs;
break;
case SkPath::kConic_Verb:
fSegmentMask |= SkPath::kConic_SegmentMask;
pCnt = 2 * numVbs;
break;
case SkPath::kCubic_Verb:
fSegmentMask |= SkPath::kCubic_SegmentMask;
pCnt = 3 * numVbs;
break;
case SkPath::kClose_Verb:
SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb");
pCnt = 0;
dirtyAfterEdit = false;
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("growForRepeatedVerb called for kDone");
// fall through
default:
SkDEBUGFAIL("default should not be reached");
pCnt = 0;
dirtyAfterEdit = false;
}
size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint);
this->makeSpace(space);
SkPoint* ret = fPoints + fPointCnt;
uint8_t* vb = fVerbs - fVerbCnt;
// cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to
// be 0, the compiler will remove the test/branch entirely.
if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
memset(vb - numVbs, verb, numVbs);
} else {
for (int i = 0; i < numVbs; ++i) {
vb[~i] = verb;
}
}
SkSafeMath safe;
fVerbCnt = safe.addInt(fVerbCnt, numVbs);
fPointCnt = safe.addInt(fPointCnt, pCnt);
if (!safe) {
SK_ABORT("cannot grow path");
}
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
if (dirtyAfterEdit) {
fIsOval = false;
fIsRRect = false;
}
if (SkPath::kConic_Verb == verb) {
SkASSERT(weights);
*weights = fConicWeights.append(numVbs);
}
SkDEBUGCODE(this->validate();)
return ret;
}
SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) {
SkDEBUGCODE(this->validate();)
int pCnt;
bool dirtyAfterEdit = true;
unsigned mask = 0;
switch (verb) {
case SkPath::kMove_Verb:
pCnt = 1;
dirtyAfterEdit = false;
break;
case SkPath::kLine_Verb:
mask = SkPath::kLine_SegmentMask;
pCnt = 1;
break;
case SkPath::kQuad_Verb:
mask = SkPath::kQuad_SegmentMask;
pCnt = 2;
break;
case SkPath::kConic_Verb:
mask = SkPath::kConic_SegmentMask;
pCnt = 2;
break;
case SkPath::kCubic_Verb:
mask = SkPath::kCubic_SegmentMask;
pCnt = 3;
break;
case SkPath::kClose_Verb:
pCnt = 0;
dirtyAfterEdit = false;
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("growForVerb called for kDone");
// fall through
default:
SkDEBUGFAIL("default is not reached");
dirtyAfterEdit = false;
pCnt = 0;
}
SkSafeMath safe;
int newPointCnt = safe.addInt(fPointCnt, pCnt);
int newVerbCnt = safe.addInt(fVerbCnt, 1);
if (!safe) {
SK_ABORT("cannot grow path");
}
size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint);
this->makeSpace(space);
this->fVerbs[~fVerbCnt] = verb;
SkPoint* ret = fPoints + fPointCnt;
fVerbCnt = newVerbCnt;
fPointCnt = newPointCnt;
fSegmentMask |= mask;
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
if (dirtyAfterEdit) {
fIsOval = false;
fIsRRect = false;
}
if (SkPath::kConic_Verb == verb) {
*fConicWeights.append() = weight;
}
SkDEBUGCODE(this->validate();)
return ret;
}
uint32_t SkPathRef::genID() const {
SkASSERT(!fEditorsAttached);
static const uint32_t kMask = (static_cast<int64_t>(1) << SkPathPriv::kPathRefGenIDBitCnt) - 1;
if (!fGenerationID) {
if (0 == fPointCnt && 0 == fVerbCnt) {
fGenerationID = kEmptyGenID;
} else {
static int32_t gPathRefGenerationID;
// do a loop in case our global wraps around, as we never want to return a 0 or the
// empty ID
do {
fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask;
} while (fGenerationID <= kEmptyGenID);
}
}
return fGenerationID;
}
void SkPathRef::addGenIDChangeListener(GenIDChangeListener* listener) {
if (nullptr == listener || this == gEmpty) {
delete listener;
return;
}
*fGenIDChangeListeners.append() = listener;
}
// we need to be called *before* the genID gets changed or zerod
void SkPathRef::callGenIDChangeListeners() {
for (int i = 0; i < fGenIDChangeListeners.count(); i++) {
fGenIDChangeListeners[i]->onChange();
}
// Listeners get at most one shot, so whether these triggered or not, blow them away.
fGenIDChangeListeners.deleteAll();
}
SkRRect SkPathRef::getRRect() const {
const SkRect& bounds = this->getBounds();
SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
Iter iter(*this);
SkPoint pts[4];
uint8_t verb = iter.next(pts);
SkASSERT(SkPath::kMove_Verb == verb);
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
if (SkPath::kConic_Verb == verb) {
SkVector v1_0 = pts[1] - pts[0];
SkVector v2_1 = pts[2] - pts[1];
SkVector dxdy;
if (v1_0.fX) {
SkASSERT(!v2_1.fX && !v1_0.fY);
dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY));
} else if (!v1_0.fY) {
SkASSERT(!v2_1.fX || !v2_1.fY);
dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY));
} else {
SkASSERT(!v2_1.fY);
dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY));
}
SkRRect::Corner corner =
pts[1].fX == bounds.fLeft ?
pts[1].fY == bounds.fTop ?
SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner :
pts[1].fY == bounds.fTop ?
SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner;
SkASSERT(!radii[corner].fX && !radii[corner].fY);
radii[corner] = dxdy;
} else {
SkASSERT((verb == SkPath::kLine_Verb
&& (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY)))
|| verb == SkPath::kClose_Verb);
}
}
SkRRect rrect;
rrect.setRectRadii(bounds, radii);
return rrect;
}
///////////////////////////////////////////////////////////////////////////////
SkPathRef::Iter::Iter() {
#ifdef SK_DEBUG
fPts = nullptr;
fConicWeights = nullptr;
#endif
// need to init enough to make next() harmlessly return kDone_Verb
fVerbs = nullptr;
fVerbStop = nullptr;
}
SkPathRef::Iter::Iter(const SkPathRef& path) {
this->setPathRef(path);
}
void SkPathRef::Iter::setPathRef(const SkPathRef& path) {
fPts = path.points();
fVerbs = path.verbs();
fVerbStop = path.verbsMemBegin();
fConicWeights = path.conicWeights();
if (fConicWeights) {
fConicWeights -= 1; // begin one behind
}
// Don't allow iteration through non-finite points.
if (!path.isFinite()) {
fVerbStop = fVerbs;
}
}
uint8_t SkPathRef::Iter::next(SkPoint pts[4]) {
SkASSERT(pts);
if (fVerbs == fVerbStop) {
return (uint8_t) SkPath::kDone_Verb;
}
// fVerbs points one beyond next verb so decrement first.
unsigned verb = *(--fVerbs);
const SkPoint* srcPts = fPts;
switch (verb) {
case SkPath::kMove_Verb:
pts[0] = srcPts[0];
srcPts += 1;
break;
case SkPath::kLine_Verb:
pts[0] = srcPts[-1];
pts[1] = srcPts[0];
srcPts += 1;
break;
case SkPath::kConic_Verb:
fConicWeights += 1;
// fall-through
case SkPath::kQuad_Verb:
pts[0] = srcPts[-1];
pts[1] = srcPts[0];
pts[2] = srcPts[1];
srcPts += 2;
break;
case SkPath::kCubic_Verb:
pts[0] = srcPts[-1];
pts[1] = srcPts[0];
pts[2] = srcPts[1];
pts[3] = srcPts[2];
srcPts += 3;
break;
case SkPath::kClose_Verb:
break;
case SkPath::kDone_Verb:
SkASSERT(fVerbs == fVerbStop);
break;
}
fPts = srcPts;
return (uint8_t) verb;
}
uint8_t SkPathRef::Iter::peek() const {
const uint8_t* next = fVerbs - 1;
return next <= fVerbStop ? (uint8_t) SkPath::kDone_Verb : *next;
}
bool SkPathRef::isValid() const {
if (static_cast<ptrdiff_t>(fFreeSpace) < 0) {
return false;
}
if (reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) < 0) {
return false;
}
if ((nullptr == fPoints) != (nullptr == fVerbs)) {
return false;
}
if (nullptr == fPoints && 0 != fFreeSpace) {
return false;
}
if (nullptr == fPoints && fPointCnt) {
return false;
}
if (nullptr == fVerbs && fVerbCnt) {
return false;
}
if (this->currSize() !=
fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt) {
return false;
}
if (fIsOval || fIsRRect) {
// Currently we don't allow both of these to be set, even though ovals are ro
if (fIsOval == fIsRRect) {
return false;
}
if (fIsOval) {
if (fRRectOrOvalStartIdx >= 4) {
return false;
}
} else {
if (fRRectOrOvalStartIdx >= 8) {
return false;
}
}
}
if (!fBoundsIsDirty && !fBounds.isEmpty()) {
bool isFinite = true;
Sk2s leftTop = Sk2s(fBounds.fLeft, fBounds.fTop);
Sk2s rightBot = Sk2s(fBounds.fRight, fBounds.fBottom);
for (int i = 0; i < fPointCnt; ++i) {
Sk2s point = Sk2s(fPoints[i].fX, fPoints[i].fY);
#ifdef SK_DEBUG
if (fPoints[i].isFinite() &&
((point < leftTop).anyTrue() || (point > rightBot).anyTrue())) {
SkDebugf("bounds: %f %f %f %f\n",
fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
for (int j = 0; j < fPointCnt; ++j) {
if (i == j) {
SkDebugf("*");
}
SkDebugf("%f %f\n", fPoints[j].fX, fPoints[j].fY);
}
}
#endif
if (fPoints[i].isFinite() && (point < leftTop).anyTrue() && !(point > rightBot).anyTrue())
return false;
if (!fPoints[i].isFinite()) {
isFinite = false;
}
}
if (SkToBool(fIsFinite) != isFinite) {
return false;
}
}
return true;
}
|