1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_DEFINED
#define SkNx_DEFINED
#include "SkSafe_math.h"
#include "SkScalar.h"
#include "SkTypes.h"
#include <limits>
#include <type_traits>
// Every single SkNx method wants to be fully inlined. (We know better than MSVC).
#define AI SK_ALWAYS_INLINE
namespace {
// The default SkNx<N,T> just proxies down to a pair of SkNx<N/2, T>.
template <int N, typename T>
struct SkNx {
typedef SkNx<N/2, T> Half;
Half fLo, fHi;
AI SkNx() = default;
AI SkNx(const Half& lo, const Half& hi) : fLo(lo), fHi(hi) {}
AI SkNx(T v) : fLo(v), fHi(v) {}
AI SkNx(T a, T b) : fLo(a) , fHi(b) { static_assert(N==2, ""); }
AI SkNx(T a, T b, T c, T d) : fLo(a,b), fHi(c,d) { static_assert(N==4, ""); }
AI SkNx(T a, T b, T c, T d, T e, T f, T g, T h) : fLo(a,b,c,d), fHi(e,f,g,h) {
static_assert(N==8, "");
}
AI SkNx(T a, T b, T c, T d, T e, T f, T g, T h,
T i, T j, T k, T l, T m, T n, T o, T p)
: fLo(a,b,c,d, e,f,g,h), fHi(i,j,k,l, m,n,o,p) {
static_assert(N==16, "");
}
AI T operator[](int k) const {
SkASSERT(0 <= k && k < N);
return k < N/2 ? fLo[k] : fHi[k-N/2];
}
AI static SkNx Load(const void* vptr) {
auto ptr = (const char*)vptr;
return { Half::Load(ptr), Half::Load(ptr + N/2*sizeof(T)) };
}
AI void store(void* vptr) const {
auto ptr = (char*)vptr;
fLo.store(ptr);
fHi.store(ptr + N/2*sizeof(T));
}
AI static void Load4(const void* vptr, SkNx* a, SkNx* b, SkNx* c, SkNx* d) {
auto ptr = (const char*)vptr;
Half al, bl, cl, dl,
ah, bh, ch, dh;
Half::Load4(ptr , &al, &bl, &cl, &dl);
Half::Load4(ptr + 4*N/2*sizeof(T), &ah, &bh, &ch, &dh);
*a = SkNx{al, ah};
*b = SkNx{bl, bh};
*c = SkNx{cl, ch};
*d = SkNx{dl, dh};
}
AI static void Load3(const void* vptr, SkNx* a, SkNx* b, SkNx* c) {
auto ptr = (const char*)vptr;
Half al, bl, cl,
ah, bh, ch;
Half::Load3(ptr , &al, &bl, &cl);
Half::Load3(ptr + 3*N/2*sizeof(T), &ah, &bh, &ch);
*a = SkNx{al, ah};
*b = SkNx{bl, bh};
*c = SkNx{cl, ch};
}
AI static void Store4(void* vptr, const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
auto ptr = (char*)vptr;
Half::Store4(ptr, a.fLo, b.fLo, c.fLo, d.fLo);
Half::Store4(ptr + 4*N/2*sizeof(T), a.fHi, b.fHi, c.fHi, d.fHi);
}
AI bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
AI bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
AI SkNx abs() const { return { fLo. abs(), fHi. abs() }; }
AI SkNx sqrt() const { return { fLo. sqrt(), fHi. sqrt() }; }
AI SkNx rsqrt() const { return { fLo. rsqrt(), fHi. rsqrt() }; }
AI SkNx floor() const { return { fLo. floor(), fHi. floor() }; }
AI SkNx invert() const { return { fLo.invert(), fHi.invert() }; }
AI SkNx operator!() const { return { !fLo, !fHi }; }
AI SkNx operator-() const { return { -fLo, -fHi }; }
AI SkNx operator~() const { return { ~fLo, ~fHi }; }
AI SkNx operator<<(int bits) const { return { fLo << bits, fHi << bits }; }
AI SkNx operator>>(int bits) const { return { fLo >> bits, fHi >> bits }; }
AI SkNx operator+(const SkNx& y) const { return { fLo + y.fLo, fHi + y.fHi }; }
AI SkNx operator-(const SkNx& y) const { return { fLo - y.fLo, fHi - y.fHi }; }
AI SkNx operator*(const SkNx& y) const { return { fLo * y.fLo, fHi * y.fHi }; }
AI SkNx operator/(const SkNx& y) const { return { fLo / y.fLo, fHi / y.fHi }; }
AI SkNx operator&(const SkNx& y) const { return { fLo & y.fLo, fHi & y.fHi }; }
AI SkNx operator|(const SkNx& y) const { return { fLo | y.fLo, fHi | y.fHi }; }
AI SkNx operator^(const SkNx& y) const { return { fLo ^ y.fLo, fHi ^ y.fHi }; }
AI SkNx operator==(const SkNx& y) const { return { fLo == y.fLo, fHi == y.fHi }; }
AI SkNx operator!=(const SkNx& y) const { return { fLo != y.fLo, fHi != y.fHi }; }
AI SkNx operator<=(const SkNx& y) const { return { fLo <= y.fLo, fHi <= y.fHi }; }
AI SkNx operator>=(const SkNx& y) const { return { fLo >= y.fLo, fHi >= y.fHi }; }
AI SkNx operator< (const SkNx& y) const { return { fLo < y.fLo, fHi < y.fHi }; }
AI SkNx operator> (const SkNx& y) const { return { fLo > y.fLo, fHi > y.fHi }; }
AI SkNx saturatedAdd(const SkNx& y) const {
return { fLo.saturatedAdd(y.fLo), fHi.saturatedAdd(y.fHi) };
}
AI SkNx mulHi(const SkNx& m) const {
return { fLo.mulHi(m.fLo), fHi.mulHi(m.fHi) };
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return { fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi) };
}
AI static SkNx Min(const SkNx& x, const SkNx& y) {
return { Half::Min(x.fLo, y.fLo), Half::Min(x.fHi, y.fHi) };
}
AI static SkNx Max(const SkNx& x, const SkNx& y) {
return { Half::Max(x.fLo, y.fLo), Half::Max(x.fHi, y.fHi) };
}
};
// The N -> N/2 recursion bottoms out at N == 1, a scalar value.
template <typename T>
struct SkNx<1,T> {
T fVal;
AI SkNx() = default;
AI SkNx(T v) : fVal(v) {}
// Android complains against unused parameters, so we guard it
AI T operator[](int SkDEBUGCODE(k)) const {
SkASSERT(k == 0);
return fVal;
}
AI static SkNx Load(const void* ptr) {
SkNx v;
memcpy(&v, ptr, sizeof(T));
return v;
}
AI void store(void* ptr) const { memcpy(ptr, &fVal, sizeof(T)); }
AI static void Load4(const void* vptr, SkNx* a, SkNx* b, SkNx* c, SkNx* d) {
auto ptr = (const char*)vptr;
*a = Load(ptr + 0*sizeof(T));
*b = Load(ptr + 1*sizeof(T));
*c = Load(ptr + 2*sizeof(T));
*d = Load(ptr + 3*sizeof(T));
}
AI static void Load3(const void* vptr, SkNx* a, SkNx* b, SkNx* c) {
auto ptr = (const char*)vptr;
*a = Load(ptr + 0*sizeof(T));
*b = Load(ptr + 1*sizeof(T));
*c = Load(ptr + 2*sizeof(T));
}
AI static void Store4(void* vptr, const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
auto ptr = (char*)vptr;
a.store(ptr + 0*sizeof(T));
b.store(ptr + 1*sizeof(T));
c.store(ptr + 2*sizeof(T));
d.store(ptr + 3*sizeof(T));
}
AI bool anyTrue() const { return fVal != 0; }
AI bool allTrue() const { return fVal != 0; }
AI SkNx abs() const { return Abs(fVal); }
AI SkNx sqrt() const { return Sqrt(fVal); }
AI SkNx rsqrt() const { return T(1) / this->sqrt(); }
AI SkNx floor() const { return Floor(fVal); }
AI SkNx invert() const { return T(1) / *this; }
AI SkNx operator!() const { return !fVal; }
AI SkNx operator-() const { return -fVal; }
AI SkNx operator~() const { return FromBits(~ToBits(fVal)); }
AI SkNx operator<<(int bits) const { return fVal << bits; }
AI SkNx operator>>(int bits) const { return fVal >> bits; }
AI SkNx operator+(const SkNx& y) const { return fVal + y.fVal; }
AI SkNx operator-(const SkNx& y) const { return fVal - y.fVal; }
AI SkNx operator*(const SkNx& y) const { return fVal * y.fVal; }
AI SkNx operator/(const SkNx& y) const { return fVal / y.fVal; }
AI SkNx operator&(const SkNx& y) const { return FromBits(ToBits(fVal) & ToBits(y.fVal)); }
AI SkNx operator|(const SkNx& y) const { return FromBits(ToBits(fVal) | ToBits(y.fVal)); }
AI SkNx operator^(const SkNx& y) const { return FromBits(ToBits(fVal) ^ ToBits(y.fVal)); }
AI SkNx operator==(const SkNx& y) const { return FromBits(fVal == y.fVal ? ~0 : 0); }
AI SkNx operator!=(const SkNx& y) const { return FromBits(fVal != y.fVal ? ~0 : 0); }
AI SkNx operator<=(const SkNx& y) const { return FromBits(fVal <= y.fVal ? ~0 : 0); }
AI SkNx operator>=(const SkNx& y) const { return FromBits(fVal >= y.fVal ? ~0 : 0); }
AI SkNx operator< (const SkNx& y) const { return FromBits(fVal < y.fVal ? ~0 : 0); }
AI SkNx operator> (const SkNx& y) const { return FromBits(fVal > y.fVal ? ~0 : 0); }
AI static SkNx Min(const SkNx& x, const SkNx& y) { return x.fVal < y.fVal ? x : y; }
AI static SkNx Max(const SkNx& x, const SkNx& y) { return x.fVal > y.fVal ? x : y; }
AI SkNx saturatedAdd(const SkNx& y) const {
static_assert(std::is_unsigned<T>::value, "");
T sum = fVal + y.fVal;
return sum < fVal ? std::numeric_limits<T>::max() : sum;
}
AI SkNx mulHi(const SkNx& m) const {
static_assert(std::is_unsigned<T>::value, "");
static_assert(sizeof(T) <= 4, "");
return static_cast<T>((static_cast<uint64_t>(fVal) * m.fVal) >> (sizeof(T)*8));
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return fVal != 0 ? t : e; }
private:
// Helper functions to choose the right float/double methods. (In <cmath> madness lies...)
AI static int Abs(int val) { return val < 0 ? -val : val; }
AI static float Abs(float val) { return ::fabsf(val); }
AI static float Sqrt(float val) { return ::sqrtf(val); }
AI static float Floor(float val) { return ::floorf(val); }
AI static double Abs(double val) { return ::fabs(val); }
AI static double Sqrt(double val) { return ::sqrt(val); }
AI static double Floor(double val) { return ::floor(val); }
// Helper functions for working with floats/doubles as bit patterns.
template <typename U>
AI static U ToBits(U v) { return v; }
AI static int32_t ToBits(float v) { int32_t bits; memcpy(&bits, &v, sizeof(v)); return bits; }
AI static int64_t ToBits(double v) { int64_t bits; memcpy(&bits, &v, sizeof(v)); return bits; }
template <typename Bits>
AI static T FromBits(Bits bits) {
static_assert(std::is_pod<T >::value &&
std::is_pod<Bits>::value &&
sizeof(T) <= sizeof(Bits), "");
T val;
memcpy(&val, &bits, sizeof(T));
return val;
}
};
// Allow scalars on the left or right of binary operators, and things like +=, &=, etc.
#define V template <int N, typename T> AI static SkNx<N,T>
V operator+ (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) + y; }
V operator- (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) - y; }
V operator* (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) * y; }
V operator/ (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) / y; }
V operator& (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) & y; }
V operator| (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) | y; }
V operator^ (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) ^ y; }
V operator==(T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) == y; }
V operator!=(T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) != y; }
V operator<=(T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) <= y; }
V operator>=(T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) >= y; }
V operator< (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) < y; }
V operator> (T x, const SkNx<N,T>& y) { return SkNx<N,T>(x) > y; }
V operator+ (const SkNx<N,T>& x, T y) { return x + SkNx<N,T>(y); }
V operator- (const SkNx<N,T>& x, T y) { return x - SkNx<N,T>(y); }
V operator* (const SkNx<N,T>& x, T y) { return x * SkNx<N,T>(y); }
V operator/ (const SkNx<N,T>& x, T y) { return x / SkNx<N,T>(y); }
V operator& (const SkNx<N,T>& x, T y) { return x & SkNx<N,T>(y); }
V operator| (const SkNx<N,T>& x, T y) { return x | SkNx<N,T>(y); }
V operator^ (const SkNx<N,T>& x, T y) { return x ^ SkNx<N,T>(y); }
V operator==(const SkNx<N,T>& x, T y) { return x == SkNx<N,T>(y); }
V operator!=(const SkNx<N,T>& x, T y) { return x != SkNx<N,T>(y); }
V operator<=(const SkNx<N,T>& x, T y) { return x <= SkNx<N,T>(y); }
V operator>=(const SkNx<N,T>& x, T y) { return x >= SkNx<N,T>(y); }
V operator< (const SkNx<N,T>& x, T y) { return x < SkNx<N,T>(y); }
V operator> (const SkNx<N,T>& x, T y) { return x > SkNx<N,T>(y); }
V& operator<<=(SkNx<N,T>& x, int bits) { return (x = x << bits); }
V& operator>>=(SkNx<N,T>& x, int bits) { return (x = x >> bits); }
V& operator +=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x + y); }
V& operator -=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x - y); }
V& operator *=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x * y); }
V& operator /=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x / y); }
V& operator &=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x & y); }
V& operator |=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x | y); }
V& operator ^=(SkNx<N,T>& x, const SkNx<N,T>& y) { return (x = x ^ y); }
V& operator +=(SkNx<N,T>& x, T y) { return (x = x + SkNx<N,T>(y)); }
V& operator -=(SkNx<N,T>& x, T y) { return (x = x - SkNx<N,T>(y)); }
V& operator *=(SkNx<N,T>& x, T y) { return (x = x * SkNx<N,T>(y)); }
V& operator /=(SkNx<N,T>& x, T y) { return (x = x / SkNx<N,T>(y)); }
V& operator &=(SkNx<N,T>& x, T y) { return (x = x & SkNx<N,T>(y)); }
V& operator |=(SkNx<N,T>& x, T y) { return (x = x | SkNx<N,T>(y)); }
V& operator ^=(SkNx<N,T>& x, T y) { return (x = x ^ SkNx<N,T>(y)); }
#undef V
// SkNx<N,T> ~~> SkNx<N/2,T> + SkNx<N/2,T>
template <int N, typename T>
AI static void SkNx_split(const SkNx<N,T>& v, SkNx<N/2,T>* lo, SkNx<N/2,T>* hi) {
*lo = v.fLo;
*hi = v.fHi;
}
// SkNx<N/2,T> + SkNx<N/2,T> ~~> SkNx<N,T>
template <int N, typename T>
AI static SkNx<N*2,T> SkNx_join(const SkNx<N,T>& lo, const SkNx<N,T>& hi) {
return { lo, hi };
}
// A very generic shuffle. Can reorder, duplicate, contract, expand...
// Sk4f v = { R,G,B,A };
// SkNx_shuffle<2,1,0,3>(v) ~~> {B,G,R,A}
// SkNx_shuffle<2,1>(v) ~~> {B,G}
// SkNx_shuffle<2,1,2,1,2,1,2,1>(v) ~~> {B,G,B,G,B,G,B,G}
// SkNx_shuffle<3,3,3,3>(v) ~~> {A,A,A,A}
template <int... Ix, int N, typename T>
AI static SkNx<sizeof...(Ix),T> SkNx_shuffle(const SkNx<N,T>& v) {
return { v[Ix]... };
}
// Cast from SkNx<N, Src> to SkNx<N, Dst>, as if you called static_cast<Dst>(Src).
template <typename Dst, typename Src, int N>
AI static SkNx<N,Dst> SkNx_cast(const SkNx<N,Src>& v) {
return { SkNx_cast<Dst>(v.fLo), SkNx_cast<Dst>(v.fHi) };
}
template <typename Dst, typename Src>
AI static SkNx<1,Dst> SkNx_cast(const SkNx<1,Src>& v) {
return static_cast<Dst>(v.fVal);
}
template <int N, typename T>
AI static SkNx<N,T> SkNx_fma(const SkNx<N,T>& f, const SkNx<N,T>& m, const SkNx<N,T>& a) {
return f*m+a;
}
} // namespace
typedef SkNx<2, float> Sk2f;
typedef SkNx<4, float> Sk4f;
typedef SkNx<8, float> Sk8f;
typedef SkNx<16, float> Sk16f;
typedef SkNx<2, SkScalar> Sk2s;
typedef SkNx<4, SkScalar> Sk4s;
typedef SkNx<8, SkScalar> Sk8s;
typedef SkNx<16, SkScalar> Sk16s;
typedef SkNx<4, uint8_t> Sk4b;
typedef SkNx<8, uint8_t> Sk8b;
typedef SkNx<16, uint8_t> Sk16b;
typedef SkNx<4, uint16_t> Sk4h;
typedef SkNx<8, uint16_t> Sk8h;
typedef SkNx<16, uint16_t> Sk16h;
typedef SkNx<4, int32_t> Sk4i;
typedef SkNx<8, int32_t> Sk8i;
typedef SkNx<4, uint32_t> Sk4u;
// Include platform specific specializations if available.
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "../opts/SkNx_sse.h"
#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON)
#include "../opts/SkNx_neon.h"
#else
AI static Sk4i Sk4f_round(const Sk4f& x) {
return { (int) lrintf (x[0]),
(int) lrintf (x[1]),
(int) lrintf (x[2]),
(int) lrintf (x[3]), };
}
#endif
AI static void Sk4f_ToBytes(uint8_t p[16],
const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) {
SkNx_cast<uint8_t>(SkNx_join(SkNx_join(a,b), SkNx_join(c,d))).store(p);
}
#undef AI
#endif//SkNx_DEFINED
|