1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMipMap.h"
#include "SkBitmap.h"
#include "SkColorData.h"
#include "SkHalf.h"
#include "SkImageInfoPriv.h"
#include "SkMathPriv.h"
#include "SkNx.h"
#include "SkPM4fPriv.h"
#include "SkSRGB.h"
#include "SkTo.h"
#include "SkTypes.h"
#include <new>
//
// ColorTypeFilter is the "Type" we pass to some downsample template functions.
// It controls how we expand a pixel into a large type, with space between each component,
// so we can then perform our simple filter (either box or triangle) and store the intermediates
// in the expanded type.
//
struct ColorTypeFilter_8888 {
typedef uint32_t Type;
static Sk4h Expand(uint32_t x) {
return SkNx_cast<uint16_t>(Sk4b::Load(&x));
}
static uint32_t Compact(const Sk4h& x) {
uint32_t r;
SkNx_cast<uint8_t>(x).store(&r);
return r;
}
};
struct ColorTypeFilter_S32 {
typedef uint32_t Type;
static Sk4h Expand(uint32_t x) {
return Sk4h(sk_linear12_from_srgb[(x ) & 0xFF],
sk_linear12_from_srgb[(x >> 8) & 0xFF],
sk_linear12_from_srgb[(x >> 16) & 0xFF],
(x >> 24) << 4);
}
static uint32_t Compact(const Sk4h& x) {
return sk_linear12_to_srgb[x[0]] |
sk_linear12_to_srgb[x[1]] << 8 |
sk_linear12_to_srgb[x[2]] << 16 |
(x[3] >> 4) << 24;
}
};
struct ColorTypeFilter_565 {
typedef uint16_t Type;
static uint32_t Expand(uint16_t x) {
return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
}
static uint16_t Compact(uint32_t x) {
return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
}
};
struct ColorTypeFilter_4444 {
typedef uint16_t Type;
static uint32_t Expand(uint16_t x) {
return (x & 0xF0F) | ((x & ~0xF0F) << 12);
}
static uint16_t Compact(uint32_t x) {
return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
}
};
struct ColorTypeFilter_8 {
typedef uint8_t Type;
static unsigned Expand(unsigned x) {
return x;
}
static uint8_t Compact(unsigned x) {
return (uint8_t)x;
}
};
struct ColorTypeFilter_F16 {
typedef uint64_t Type; // SkHalf x4
static Sk4f Expand(uint64_t x) {
return SkHalfToFloat_finite_ftz(x);
}
static uint64_t Compact(const Sk4f& x) {
uint64_t r;
SkFloatToHalf_finite_ftz(x).store(&r);
return r;
}
};
template <typename T> T add_121(const T& a, const T& b, const T& c) {
return a + b + b + c;
}
template <typename T> T shift_right(const T& x, int bits) {
return x >> bits;
}
Sk4f shift_right(const Sk4f& x, int bits) {
return x * (1.0f / (1 << bits));
}
template <typename T> T shift_left(const T& x, int bits) {
return x << bits;
}
Sk4f shift_left(const Sk4f& x, int bits) {
return x * (1 << bits);
}
//
// To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
// If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
// In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
// else for even cases, we just use a 2x box filter.
//
// This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
// src pixels we need to sample in each dimension to produce 1 dst pixel.
//
// OpenGL expects a full mipmap stack to contain anisotropic space as well.
// This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
// Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c10 = F::Expand(p1[0]);
auto c = c00 + c10;
d[i] = F::Compact(shift_right(c, 1));
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c10 = F::Expand(p1[0]);
auto c20 = F::Expand(p2[0]);
auto c = add_121(c00, c10, c20);
d[i] = F::Compact(shift_right(c, 2));
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c = c00 + c01;
d[i] = F::Compact(shift_right(c, 1));
p0 += 2;
}
}
template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c10 = F::Expand(p1[0]);
auto c11 = F::Expand(p1[1]);
auto c = c00 + c10 + c01 + c11;
d[i] = F::Compact(shift_right(c, 2));
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c10 = F::Expand(p1[0]);
auto c11 = F::Expand(p1[1]);
auto c20 = F::Expand(p2[0]);
auto c21 = F::Expand(p2[1]);
auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
d[i] = F::Compact(shift_right(c, 3));
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto d = static_cast<typename F::Type*>(dst);
auto c02 = F::Expand(p0[0]);
for (int i = 0; i < count; ++i) {
auto c00 = c02;
auto c01 = F::Expand(p0[1]);
c02 = F::Expand(p0[2]);
auto c = add_121(c00, c01, c02);
d[i] = F::Compact(shift_right(c, 2));
p0 += 2;
}
}
template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
// Given pixels:
// a0 b0 c0 d0 e0 ...
// a1 b1 c1 d1 e1 ...
// We want:
// (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8
// (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8
// ...
auto c0 = F::Expand(p0[0]);
auto c1 = F::Expand(p1[0]);
auto c = c0 + c1;
for (int i = 0; i < count; ++i) {
auto a = c;
auto b0 = F::Expand(p0[1]);
auto b1 = F::Expand(p1[1]);
auto b = b0 + b0 + b1 + b1;
c0 = F::Expand(p0[2]);
c1 = F::Expand(p1[2]);
c = c0 + c1;
auto sum = a + b + c;
d[i] = F::Compact(shift_right(sum, 3));
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
// Given pixels:
// a0 b0 c0 d0 e0 ...
// a1 b1 c1 d1 e1 ...
// a2 b2 c2 d2 e2 ...
// We want:
// (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
// (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
// ...
auto c0 = F::Expand(p0[0]);
auto c1 = F::Expand(p1[0]);
auto c2 = F::Expand(p2[0]);
auto c = add_121(c0, c1, c2);
for (int i = 0; i < count; ++i) {
auto a = c;
auto b0 = F::Expand(p0[1]);
auto b1 = F::Expand(p1[1]);
auto b2 = F::Expand(p2[1]);
auto b = shift_left(add_121(b0, b1, b2), 1);
c0 = F::Expand(p0[2]);
c1 = F::Expand(p1[2]);
c2 = F::Expand(p2[2]);
c = add_121(c0, c1, c2);
auto sum = a + b + c;
d[i] = F::Compact(shift_right(sum, 4));
p0 += 2;
p1 += 2;
p2 += 2;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// Some sRGB specific performance optimizations.
void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) {
const uint8_t* p0 = ((const uint8_t*) src);
const uint8_t* p1 = ((const uint8_t*) src) + srcRB;
uint8_t* d = (uint8_t*) dst;
// Given pixels:
// a0 b0 c0 d0 ...
// a1 b1 c1 d1 ...
// We want:
// (a0 + b0 + a1 + b1) / 4
// (c0 + d0 + c1 + d1) / 4
// ...
while (count >= 2) {
Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
sk_linear12_from_srgb[p0[ 1]],
sk_linear12_from_srgb[p0[ 2]],
p0[ 3] << 4 ,
sk_linear12_from_srgb[p0[ 8]],
sk_linear12_from_srgb[p0[ 9]],
sk_linear12_from_srgb[p0[10]],
p0[11] << 4 );
Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
sk_linear12_from_srgb[p0[ 5]],
sk_linear12_from_srgb[p0[ 6]],
p0[ 7] << 4 ,
sk_linear12_from_srgb[p0[12]],
sk_linear12_from_srgb[p0[13]],
sk_linear12_from_srgb[p0[14]],
p0[15] << 4 );
Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
sk_linear12_from_srgb[p1[ 1]],
sk_linear12_from_srgb[p1[ 2]],
p1[ 3] << 4 ,
sk_linear12_from_srgb[p1[ 8]],
sk_linear12_from_srgb[p1[ 9]],
sk_linear12_from_srgb[p1[10]],
p1[11] << 4 );
Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
sk_linear12_from_srgb[p1[ 5]],
sk_linear12_from_srgb[p1[ 6]],
p1[ 7] << 4 ,
sk_linear12_from_srgb[p1[12]],
sk_linear12_from_srgb[p1[13]],
sk_linear12_from_srgb[p1[14]],
p1[15] << 4 );
Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2;
d[0] = sk_linear12_to_srgb[avg[0]];
d[1] = sk_linear12_to_srgb[avg[1]];
d[2] = sk_linear12_to_srgb[avg[2]];
d[3] = avg[3] >> 4;
d[4] = sk_linear12_to_srgb[avg[4]];
d[5] = sk_linear12_to_srgb[avg[5]];
d[6] = sk_linear12_to_srgb[avg[6]];
d[7] = avg[7] >> 4;
p0 += 16;
p1 += 16;
d += 8;
count -= 2;
}
if (count) {
downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count);
}
}
void downsample_2_3_srgb(void* dst, const void* src, size_t srcRB, int count) {
const uint8_t* p0 = ((const uint8_t*) src);
const uint8_t* p1 = p0 + srcRB;
const uint8_t* p2 = p1 + srcRB;
uint8_t* d = (uint8_t*) dst;
// Given pixels:
// a0 b0 c0 d0 ...
// a1 b1 c1 d1 ...
// a2 b2 c2 d2 ...
// We want:
// (a0 + b0 + 2*a1 + 2*b1 + a2 + b2) / 8
// (c0 + d0 + 2*c1 + 2*d1 + c2 + d2) / 8
// ...
while (count >= 2) {
Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
sk_linear12_from_srgb[p0[ 1]],
sk_linear12_from_srgb[p0[ 2]],
p0[ 3] << 4 ,
sk_linear12_from_srgb[p0[ 8]],
sk_linear12_from_srgb[p0[ 9]],
sk_linear12_from_srgb[p0[10]],
p0[11] << 4 );
Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
sk_linear12_from_srgb[p0[ 5]],
sk_linear12_from_srgb[p0[ 6]],
p0[ 7] << 4 ,
sk_linear12_from_srgb[p0[12]],
sk_linear12_from_srgb[p0[13]],
sk_linear12_from_srgb[p0[14]],
p0[15] << 4 );
Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
sk_linear12_from_srgb[p1[ 1]],
sk_linear12_from_srgb[p1[ 2]],
p1[ 3] << 4 ,
sk_linear12_from_srgb[p1[ 8]],
sk_linear12_from_srgb[p1[ 9]],
sk_linear12_from_srgb[p1[10]],
p1[11] << 4 );
Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
sk_linear12_from_srgb[p1[ 5]],
sk_linear12_from_srgb[p1[ 6]],
p1[ 7] << 4 ,
sk_linear12_from_srgb[p1[12]],
sk_linear12_from_srgb[p1[13]],
sk_linear12_from_srgb[p1[14]],
p1[15] << 4 );
Sk8h a2c2 = Sk8h(sk_linear12_from_srgb[p2[ 0]],
sk_linear12_from_srgb[p2[ 1]],
sk_linear12_from_srgb[p2[ 2]],
p2[ 3] << 4 ,
sk_linear12_from_srgb[p2[ 8]],
sk_linear12_from_srgb[p2[ 9]],
sk_linear12_from_srgb[p2[10]],
p2[11] << 4 );
Sk8h b2d2 = Sk8h(sk_linear12_from_srgb[p2[ 4]],
sk_linear12_from_srgb[p2[ 5]],
sk_linear12_from_srgb[p2[ 6]],
p2[ 7] << 4 ,
sk_linear12_from_srgb[p2[12]],
sk_linear12_from_srgb[p2[13]],
sk_linear12_from_srgb[p2[14]],
p2[15] << 4 );
Sk8h avg = (a0c0 + b0d0 + a1c1 + a1c1 + b1d1 + b1d1 + a2c2 + b2d2) >> 3;
d[0] = sk_linear12_to_srgb[avg[0]];
d[1] = sk_linear12_to_srgb[avg[1]];
d[2] = sk_linear12_to_srgb[avg[2]];
d[3] = avg[3] >> 4;
d[4] = sk_linear12_to_srgb[avg[4]];
d[5] = sk_linear12_to_srgb[avg[5]];
d[6] = sk_linear12_to_srgb[avg[6]];
d[7] = avg[7] >> 4;
p0 += 16;
p1 += 16;
p2 += 16;
d += 8;
count -= 2;
}
if (count) {
downsample_2_3<ColorTypeFilter_S32>(d, p0, srcRB, count);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
if (levelCount < 0) {
return 0;
}
int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
if (!SkTFitsIn<int32_t>(size)) {
return 0;
}
return SkTo<int32_t>(size);
}
SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
FilterProc* proc_1_2 = nullptr;
FilterProc* proc_1_3 = nullptr;
FilterProc* proc_2_1 = nullptr;
FilterProc* proc_2_2 = nullptr;
FilterProc* proc_2_3 = nullptr;
FilterProc* proc_3_1 = nullptr;
FilterProc* proc_3_2 = nullptr;
FilterProc* proc_3_3 = nullptr;
const SkColorType ct = src.colorType();
const SkAlphaType at = src.alphaType();
const bool srgbGamma = false; // TODO: sRGB_ColorType
switch (ct) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
if (srgbGamma) {
proc_1_2 = downsample_1_2<ColorTypeFilter_S32>;
proc_1_3 = downsample_1_3<ColorTypeFilter_S32>;
proc_2_1 = downsample_2_1<ColorTypeFilter_S32>;
proc_2_2 = downsample_2_2_srgb;
proc_2_3 = downsample_2_3_srgb;
proc_3_1 = downsample_3_1<ColorTypeFilter_S32>;
proc_3_2 = downsample_3_2<ColorTypeFilter_S32>;
proc_3_3 = downsample_3_3<ColorTypeFilter_S32>;
} else {
proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
}
break;
case kRGB_565_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
break;
case kARGB_4444_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
break;
case kAlpha_8_SkColorType:
case kGray_8_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
break;
case kRGBA_F16_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_F16>;
proc_1_3 = downsample_1_3<ColorTypeFilter_F16>;
proc_2_1 = downsample_2_1<ColorTypeFilter_F16>;
proc_2_2 = downsample_2_2<ColorTypeFilter_F16>;
proc_2_3 = downsample_2_3<ColorTypeFilter_F16>;
proc_3_1 = downsample_3_1<ColorTypeFilter_F16>;
proc_3_2 = downsample_3_2<ColorTypeFilter_F16>;
proc_3_3 = downsample_3_3<ColorTypeFilter_F16>;
break;
default:
// TODO: We could build miplevels for kIndex8 if the levels were in 8888.
// Means using more ram, but the quality would be fine.
return nullptr;
}
if (src.width() <= 1 && src.height() <= 1) {
return nullptr;
}
// whip through our loop to compute the exact size needed
size_t size = 0;
int countLevels = ComputeLevelCount(src.width(), src.height());
for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) {
SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel);
size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight;
}
size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
if (0 == storageSize) {
return nullptr;
}
SkMipMap* mipmap;
if (fact) {
SkDiscardableMemory* dm = fact(storageSize);
if (nullptr == dm) {
return nullptr;
}
mipmap = new SkMipMap(storageSize, dm);
} else {
mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
}
// init
mipmap->fCS = sk_ref_sp(src.info().colorSpace());
mipmap->fCount = countLevels;
mipmap->fLevels = (Level*)mipmap->writable_data();
SkASSERT(mipmap->fLevels);
Level* levels = mipmap->fLevels;
uint8_t* baseAddr = (uint8_t*)&levels[countLevels];
uint8_t* addr = baseAddr;
int width = src.width();
int height = src.height();
uint32_t rowBytes;
SkPixmap srcPM(src);
for (int i = 0; i < countLevels; ++i) {
FilterProc* proc;
if (height & 1) {
if (height == 1) { // src-height is 1
if (width & 1) { // src-width is 3
proc = proc_3_1;
} else { // src-width is 2
proc = proc_2_1;
}
} else { // src-height is 3
if (width & 1) {
if (width == 1) { // src-width is 1
proc = proc_1_3;
} else { // src-width is 3
proc = proc_3_3;
}
} else { // src-width is 2
proc = proc_2_3;
}
}
} else { // src-height is 2
if (width & 1) {
if (width == 1) { // src-width is 1
proc = proc_1_2;
} else { // src-width is 3
proc = proc_3_2;
}
} else { // src-width is 2
proc = proc_2_2;
}
}
width = SkTMax(1, width >> 1);
height = SkTMax(1, height >> 1);
rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
// We make the Info w/o any colorspace, since that storage is not under our control, and
// will not be deleted in a controlled fashion. When the caller is given the pixmap for
// a given level, we augment this pixmap with fCS (which we do manage).
new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(),
SkIntToScalar(height) / src.height());
const SkPixmap& dstPM = levels[i].fPixmap;
const void* srcBasePtr = srcPM.addr();
void* dstBasePtr = dstPM.writable_addr();
const size_t srcRB = srcPM.rowBytes();
for (int y = 0; y < height; y++) {
proc(dstBasePtr, srcBasePtr, srcRB, width);
srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
}
srcPM = dstPM;
addr += height * rowBytes;
}
SkASSERT(addr == baseAddr + size);
SkASSERT(mipmap->fLevels);
return mipmap;
}
int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
if (baseWidth < 1 || baseHeight < 1) {
return 0;
}
// OpenGL's spec requires that each mipmap level have height/width equal to
// max(1, floor(original_height / 2^i)
// (or original_width) where i is the mipmap level.
// Continue scaling down until both axes are size 1.
const int largestAxis = SkTMax(baseWidth, baseHeight);
if (largestAxis < 2) {
// SkMipMap::Build requires a minimum size of 2.
return 0;
}
const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
// If the value 00011010 has 3 leading 0s then it has 5 significant bits
// (the bits which are not leading zeros)
const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
// This is making the assumption that the size of a byte is 8 bits
// and that sizeof(uint32_t)'s implementation-defined behavior is 4.
int mipLevelCount = significantBits;
// SkMipMap does not include the base mip level.
// For example, it contains levels 1-x instead of 0-x.
// This is because the image used to create SkMipMap is the base level.
// So subtract 1 from the mip level count.
if (mipLevelCount > 0) {
--mipLevelCount;
}
return mipLevelCount;
}
SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) {
if (baseWidth < 1 || baseHeight < 1) {
return SkISize::Make(0, 0);
}
int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight);
if (level >= maxLevelCount || level < 0) {
return SkISize::Make(0, 0);
}
// OpenGL's spec requires that each mipmap level have height/width equal to
// max(1, floor(original_height / 2^i)
// (or original_width) where i is the mipmap level.
// SkMipMap does not include the base mip level.
// For example, it contains levels 1-x instead of 0-x.
// This is because the image used to create SkMipMap is the base level.
// So subtract 1 from the mip level to get the index stored by SkMipMap.
int width = SkTMax(1, baseWidth >> (level + 1));
int height = SkTMax(1, baseHeight >> (level + 1));
return SkISize::Make(width, height);
}
///////////////////////////////////////////////////////////////////////////////
bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
if (nullptr == fLevels) {
return false;
}
SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
#ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
// Use the smallest scale to match the GPU impl.
const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
#else
// Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the
// scales can produce some atrocious results, so for now we use the geometric mean.
// (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
#endif
if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
return false;
}
SkScalar L = -SkScalarLog2(scale);
if (!SkScalarIsFinite(L)) {
return false;
}
SkASSERT(L >= 0);
int level = SkScalarFloorToInt(L);
SkASSERT(level >= 0);
if (level <= 0) {
return false;
}
if (level > fCount) {
level = fCount;
}
if (levelPtr) {
*levelPtr = fLevels[level - 1];
// need to augment with our colorspace
levelPtr->fPixmap.setColorSpace(fCS);
}
return true;
}
// Helper which extracts a pixmap from the src bitmap
//
SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) {
SkPixmap srcPixmap;
if (!src.peekPixels(&srcPixmap)) {
return nullptr;
}
return Build(srcPixmap, fact);
}
int SkMipMap::countLevels() const {
return fCount;
}
bool SkMipMap::getLevel(int index, Level* levelPtr) const {
if (nullptr == fLevels) {
return false;
}
if (index < 0) {
return false;
}
if (index > fCount - 1) {
return false;
}
if (levelPtr) {
*levelPtr = fLevels[index];
}
return true;
}
|