aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkImageCacherator.cpp
blob: 64b2e62a33f0e11ec3779aa64bd6518faa9f9d0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkBitmapCache.h"
#include "SkColorSpace_Base.h"
#include "SkImage_Base.h"
#include "SkImageCacherator.h"
#include "SkMallocPixelRef.h"
#include "SkNextID.h"
#include "SkPixelRef.h"
#include "SkResourceCache.h"

#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGpuResourcePriv.h"
#include "GrImageTextureMaker.h"
#include "GrResourceKey.h"
#include "GrResourceProvider.h"
#include "GrSamplerParams.h"
#include "GrYUVProvider.h"
#include "SkGr.h"
#endif

// Until we actually have codecs/etc. that can contain/support a GPU texture format
// skip this step, since for some generators, returning their encoded data as a SkData
// can be somewhat expensive, and this call doesn't indicate to the generator that we're
// only interested in GPU datas...
// see skbug.com/ 4971, 5128, ...
//#define SK_SUPPORT_COMPRESSED_TEXTURES_IN_CACHERATOR

// Helper for exclusive access to a shared generator.
class SkImageCacherator::ScopedGenerator {
public:
    ScopedGenerator(const sk_sp<SharedGenerator>& gen)
      : fSharedGenerator(gen)
      , fAutoAquire(gen->fMutex) {}

    SkImageGenerator* operator->() const {
        fSharedGenerator->fMutex.assertHeld();
        return fSharedGenerator->fGenerator.get();
    }

    operator SkImageGenerator*() const {
        fSharedGenerator->fMutex.assertHeld();
        return fSharedGenerator->fGenerator.get();
    }

private:
    const sk_sp<SharedGenerator>& fSharedGenerator;
    SkAutoExclusive               fAutoAquire;
};

SkImageCacherator::Validator::Validator(sk_sp<SharedGenerator> gen, const SkIRect* subset)
    : fSharedGenerator(std::move(gen)) {

    if (!fSharedGenerator) {
        return;
    }

    // The following generator accessors are safe without acquiring the mutex (const getters).
    // TODO: refactor to use a ScopedGenerator instead, for clarity.
    const SkImageInfo& info = fSharedGenerator->fGenerator->getInfo();
    if (info.isEmpty()) {
        fSharedGenerator.reset();
        return;
    }

    fUniqueID = fSharedGenerator->fGenerator->uniqueID();
    const SkIRect bounds = SkIRect::MakeWH(info.width(), info.height());
    if (subset) {
        if (!bounds.contains(*subset)) {
            fSharedGenerator.reset();
            return;
        }
        if (*subset != bounds) {
            // we need a different uniqueID since we really are a subset of the raw generator
            fUniqueID = SkNextID::ImageID();
        }
    } else {
        subset = &bounds;
    }

    fInfo   = info.makeWH(subset->width(), subset->height());
    fOrigin = SkIPoint::Make(subset->x(), subset->y());

    // If the encoded data is in a strange color space (it's not an XYZ matrix space), we won't be
    // able to preserve the gamut of the encoded data when we decode it. Instead, we'll have to
    // decode to a known color space (linear sRGB is a good choice). But we need to adjust the
    // stored color space, because drawing code will ask the SkImage for its color space, which
    // will in turn ask the cacherator. If we return the A2B color space, then we will be unable to
    // construct a source-to-dest gamut transformation matrix.
    if (fInfo.colorSpace() &&
        SkColorSpace_Base::Type::kXYZ != as_CSB(fInfo.colorSpace())->type()) {
        fInfo = fInfo.makeColorSpace(SkColorSpace::MakeSRGBLinear());
    }
}

SkImageCacherator* SkImageCacherator::NewFromGenerator(std::unique_ptr<SkImageGenerator> gen,
                                                       const SkIRect* subset) {
    Validator validator(SharedGenerator::Make(std::move(gen)), subset);

    return validator ? new SkImageCacherator(&validator) : nullptr;
}

SkImageCacherator::SkImageCacherator(Validator* validator)
    : fSharedGenerator(std::move(validator->fSharedGenerator)) // we take ownership
    , fInfo(validator->fInfo)
    , fOrigin(validator->fOrigin)
{
    fUniqueIDs[kLegacy_CachedFormat] = validator->fUniqueID;
    for (int i = 1; i < kNumCachedFormats; ++i) {
        // We lazily allocate IDs for non-default caching cases
        fUniqueIDs[i] = kNeedNewImageUniqueID;
    }
    SkASSERT(fSharedGenerator);
}

SkImageCacherator::~SkImageCacherator() {}

SkData* SkImageCacherator::refEncoded(GrContext* ctx) {
    ScopedGenerator generator(fSharedGenerator);
    return generator->refEncodedData(ctx);
}

static bool check_output_bitmap(const SkBitmap& bitmap, uint32_t expectedID) {
    SkASSERT(bitmap.getGenerationID() == expectedID);
    SkASSERT(bitmap.isImmutable());
    SkASSERT(bitmap.getPixels());
    return true;
}

// Note, this returns a new, mutable, bitmap, with a new genID.
// If you want the immutable bitmap with the same ID as our cacherator, call tryLockAsBitmap()
//
bool SkImageCacherator::generateBitmap(SkBitmap* bitmap, const SkImageInfo& decodeInfo) {
    SkBitmap::Allocator* allocator = SkResourceCache::GetAllocator();

    ScopedGenerator generator(fSharedGenerator);
    const SkImageInfo& genInfo = generator->getInfo();
    if (decodeInfo.dimensions() == genInfo.dimensions()) {
        SkASSERT(fOrigin.x() == 0 && fOrigin.y() == 0);
        // fast-case, no copy needed
        return generator->tryGenerateBitmap(bitmap, decodeInfo, allocator);
    } else {
        // need to handle subsetting, so we first generate the full size version, and then
        // "read" from it to get our subset. See https://bug.skia.org/4213

        SkBitmap full;
        if (!generator->tryGenerateBitmap(&full,
                                          decodeInfo.makeWH(genInfo.width(), genInfo.height()),
                                          allocator)) {
            return false;
        }
        if (!bitmap->tryAllocPixels(decodeInfo, nullptr, full.getColorTable())) {
            return false;
        }
        return full.readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(),
                               fOrigin.x(), fOrigin.y());
    }
}

bool SkImageCacherator::directGeneratePixels(const SkImageInfo& info, void* pixels, size_t rb,
                                             int srcX, int srcY) {
    ScopedGenerator generator(fSharedGenerator);
    const SkImageInfo& genInfo = generator->getInfo();
    // Currently generators do not natively handle subsets, so check that first.
    if (srcX || srcY || genInfo.width() != info.width() || genInfo.height() != info.height()) {
        return false;
    }
    return generator->getPixels(info, pixels, rb);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

bool SkImageCacherator::lockAsBitmapOnlyIfAlreadyCached(SkBitmap* bitmap, CachedFormat format) {
    return kNeedNewImageUniqueID != fUniqueIDs[format] &&
        SkBitmapCache::Find(fUniqueIDs[format], bitmap) &&
        check_output_bitmap(*bitmap, fUniqueIDs[format]);
}

bool SkImageCacherator::tryLockAsBitmap(SkBitmap* bitmap, const SkImage* client,
                                        SkImage::CachingHint chint, CachedFormat format,
                                        const SkImageInfo& info) {
    if (this->lockAsBitmapOnlyIfAlreadyCached(bitmap, format)) {
        return true;
    }
    if (!this->generateBitmap(bitmap, info)) {
        return false;
    }

    if (kNeedNewImageUniqueID == fUniqueIDs[format]) {
        fUniqueIDs[format] = SkNextID::ImageID();
    }
    bitmap->pixelRef()->setImmutableWithID(fUniqueIDs[format]);
    if (SkImage::kAllow_CachingHint == chint) {
        SkBitmapCache::Add(fUniqueIDs[format], *bitmap);
        if (client) {
            as_IB(client)->notifyAddedToCache();
        }
    }
    return true;
}

bool SkImageCacherator::lockAsBitmap(GrContext* context, SkBitmap* bitmap, const SkImage* client,
                                     SkColorSpace* dstColorSpace,
                                     SkImage::CachingHint chint) {
    CachedFormat format = this->chooseCacheFormat(dstColorSpace);
    SkImageInfo cacheInfo = this->buildCacheInfo(format);

    if (kNeedNewImageUniqueID == fUniqueIDs[format]) {
        fUniqueIDs[format] = SkNextID::ImageID();
    }

    if (this->tryLockAsBitmap(bitmap, client, chint, format, cacheInfo)) {
        return check_output_bitmap(*bitmap, fUniqueIDs[format]);
    }

#if SK_SUPPORT_GPU
    if (!context) {
        bitmap->reset();
        return false;
    }

    // Try to get a texture and read it back to raster (and then cache that with our ID)
    sk_sp<GrTextureProxy> proxy;

    {
        ScopedGenerator generator(fSharedGenerator);
        proxy = generator->generateTexture(context, cacheInfo, fOrigin);
    }
    if (!proxy) {
        bitmap->reset();
        return false;
    }

    if (!bitmap->tryAllocPixels(cacheInfo)) {
        bitmap->reset();
        return false;
    }

    sk_sp<GrSurfaceContext> sContext(context->contextPriv().makeWrappedSurfaceContext(
                                                    proxy,
                                                    fInfo.refColorSpace())); // src colorSpace
    if (!sContext) {
        bitmap->reset();
        return false;
    }

    if (!sContext->readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(), 0, 0)) {
        bitmap->reset();
        return false;
    }

    bitmap->pixelRef()->setImmutableWithID(fUniqueIDs[format]);
    if (SkImage::kAllow_CachingHint == chint) {
        SkBitmapCache::Add(fUniqueIDs[format], *bitmap);
        if (client) {
            as_IB(client)->notifyAddedToCache();
        }
    }
    return check_output_bitmap(*bitmap, fUniqueIDs[format]);
#else
    return false;
#endif
}

//////////////////////////////////////////////////////////////////////////////////////////////////

// Abstraction of GrCaps that handles the cases where we don't have a caps pointer (because
// we're in raster mode), or where GPU support is entirely missing. In theory, we only need the
// chosen format to be texturable, but that lets us choose F16 on GLES implemenations where we
// won't be able to read the texture back. We'd like to ensure that SkImake::makeNonTextureImage
// works, so we require that the formats we choose are renderable (as a proxy for being readable).
struct CacheCaps {
    CacheCaps(const GrCaps* caps) : fCaps(caps) {}

#if SK_SUPPORT_GPU
    bool supportsHalfFloat() const {
        return !fCaps ||
            (fCaps->isConfigTexturable(kRGBA_half_GrPixelConfig) &&
             fCaps->isConfigRenderable(kRGBA_half_GrPixelConfig, false));
    }

    bool supportsSRGB() const {
        return !fCaps ||
            (fCaps->srgbSupport() && fCaps->isConfigTexturable(kSRGBA_8888_GrPixelConfig));
    }

    bool supportsSBGR() const {
        return !fCaps || fCaps->srgbSupport();
    }
#else
    bool supportsHalfFloat() const { return true; }
    bool supportsSRGB() const { return true; }
    bool supportsSBGR() const { return true; }
#endif

    const GrCaps* fCaps;
};

SkImageCacherator::CachedFormat SkImageCacherator::chooseCacheFormat(SkColorSpace* dstColorSpace,
                                                                     const GrCaps* grCaps) {
    SkColorSpace* cs = fInfo.colorSpace();
    if (!cs || !dstColorSpace) {
        return kLegacy_CachedFormat;
    }

    CacheCaps caps(grCaps);
    switch (fInfo.colorType()) {
        case kUnknown_SkColorType:
        case kAlpha_8_SkColorType:
        case kRGB_565_SkColorType:
        case kARGB_4444_SkColorType:
            // We don't support color space on these formats, so always decode in legacy mode:
            // TODO: Ask the codec to decode these to something else (at least sRGB 8888)?
            return kLegacy_CachedFormat;

        case kIndex_8_SkColorType:
            // We can't draw from indexed textures with a color space, so ask the codec to expand
            if (cs->gammaCloseToSRGB()) {
                if (caps.supportsSRGB()) {
                    return kSRGB8888_CachedFormat;
                } else if (caps.supportsHalfFloat()) {
                    return kLinearF16_CachedFormat;
                } else {
                    return kLegacy_CachedFormat;
                }
            } else {
                if (caps.supportsHalfFloat()) {
                    return kLinearF16_CachedFormat;
                } else if (caps.supportsSRGB()) {
                    return kSRGB8888_CachedFormat;
                } else {
                    return kLegacy_CachedFormat;
                }
            }

        case kGray_8_SkColorType:
            // TODO: What do we do with grayscale sources that have strange color spaces attached?
            // The codecs and color space xform don't handle this correctly (yet), so drop it on
            // the floor. (Also, inflating by a factor of 8 is going to be unfortunate).
            // As it is, we don't directly support sRGB grayscale, so ask the codec to convert
            // it for us. This bypasses some really sketchy code GrUploadPixmapToTexture.
            if (cs->gammaCloseToSRGB() && caps.supportsSRGB()) {
                return kSRGB8888_CachedFormat;
            } else {
                return kLegacy_CachedFormat;
            }

        case kRGBA_8888_SkColorType:
            if (cs->gammaCloseToSRGB()) {
                if (caps.supportsSRGB()) {
                    return kAsIs_CachedFormat;
                } else if (caps.supportsHalfFloat()) {
                    return kLinearF16_CachedFormat;
                } else {
                    return kLegacy_CachedFormat;
                }
            } else {
                if (caps.supportsHalfFloat()) {
                    return kLinearF16_CachedFormat;
                } else if (caps.supportsSRGB()) {
                    return kSRGB8888_CachedFormat;
                } else {
                    return kLegacy_CachedFormat;
                }
            }

        case kBGRA_8888_SkColorType:
            // Odd case. sBGRA isn't a real thing, so we may not have this texturable.
            if (caps.supportsSBGR()) {
                if (cs->gammaCloseToSRGB()) {
                    return kAsIs_CachedFormat;
                } else if (caps.supportsHalfFloat()) {
                    return kLinearF16_CachedFormat;
                } else if (caps.supportsSRGB()) {
                    return kSRGB8888_CachedFormat;
                } else {
                    // sBGRA support without sRGBA is highly unlikely (impossible?) Nevertheless.
                    return kLegacy_CachedFormat;
                }
            } else {
                if (cs->gammaCloseToSRGB()) {
                    if (caps.supportsSRGB()) {
                        return kSRGB8888_CachedFormat;
                    } else if (caps.supportsHalfFloat()) {
                        return kLinearF16_CachedFormat;
                    } else {
                        return kLegacy_CachedFormat;
                    }
                } else {
                    if (caps.supportsHalfFloat()) {
                        return kLinearF16_CachedFormat;
                    } else if (caps.supportsSRGB()) {
                        return kSRGB8888_CachedFormat;
                    } else {
                        return kLegacy_CachedFormat;
                    }
                }
            }

        case kRGBA_F16_SkColorType:
            if (!caps.supportsHalfFloat()) {
                if (caps.supportsSRGB()) {
                    return kSRGB8888_CachedFormat;
                } else {
                    return kLegacy_CachedFormat;
                }
            } else if (cs->gammaIsLinear()) {
                return kAsIs_CachedFormat;
            } else {
                return kLinearF16_CachedFormat;
            }
    }
    SkDEBUGFAIL("Unreachable");
    return kLegacy_CachedFormat;
}

SkImageInfo SkImageCacherator::buildCacheInfo(CachedFormat format) {
    switch (format) {
        case kLegacy_CachedFormat:
            return fInfo.makeColorSpace(nullptr);
        case kAsIs_CachedFormat:
            return fInfo;
        case kLinearF16_CachedFormat:
            return fInfo
                .makeColorType(kRGBA_F16_SkColorType)
                .makeColorSpace(as_CSB(fInfo.colorSpace())->makeLinearGamma());
        case kSRGB8888_CachedFormat:
            return fInfo
                .makeColorType(kRGBA_8888_SkColorType)
                .makeColorSpace(as_CSB(fInfo.colorSpace())->makeSRGBGamma());
        default:
            SkDEBUGFAIL("Invalid cached format");
            return fInfo;
    }
}

//////////////////////////////////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

void SkImageCacherator::makeCacheKeyFromOrigKey(const GrUniqueKey& origKey, CachedFormat format,
                                                GrUniqueKey* cacheKey) {
    SkASSERT(!cacheKey->isValid());
    if (origKey.isValid()) {
        static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
        GrUniqueKey::Builder builder(cacheKey, origKey, kDomain, 1);
        builder[0] = format;
    }
}

#ifdef SK_SUPPORT_COMPRESSED_TEXTURES_IN_CACHERATOR
static GrTexture* load_compressed_into_texture(GrContext* ctx, SkData* data, GrSurfaceDesc desc) {
    const void* rawStart;
    GrPixelConfig config = GrIsCompressedTextureDataSupported(ctx, data, desc.fWidth, desc.fHeight,
                                                              &rawStart);
    if (kUnknown_GrPixelConfig == config) {
        return nullptr;
    }

    desc.fConfig = config;
    return ctx->resourceProvider()->createTexture(desc, SkBudgeted::kYes, rawStart, 0);
}
#endif

class Generator_GrYUVProvider : public GrYUVProvider {
    SkImageGenerator* fGen;

public:
    Generator_GrYUVProvider(SkImageGenerator* gen) : fGen(gen) {}

    uint32_t onGetID() override { return fGen->uniqueID(); }
    bool onQueryYUV8(SkYUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const override {
        return fGen->queryYUV8(sizeInfo, colorSpace);
    }
    bool onGetYUV8Planes(const SkYUVSizeInfo& sizeInfo, void* planes[3]) override {
        return fGen->getYUV8Planes(sizeInfo, planes);
    }
};

static GrTexture* set_key_and_return(GrResourceProvider* resourceProvider,
                                     GrTexture* tex, const GrUniqueKey& key) {
    if (key.isValid()) {
        resourceProvider->assignUniqueKeyToTexture(key, tex);
    }
    return tex;
}

#if 0
static void set_key_on_proxy(GrResourceProvider* resourceProvider,
                             GrTextureProxy* proxy, const GrUniqueKey& key) {
    if (key.isValid()) {
        resourceProvider->assignUniqueKeyToProxy(key, proxy);
    }
}
#endif

sk_sp<SkColorSpace> SkImageCacherator::getColorSpace(GrContext* ctx, SkColorSpace* dstColorSpace) {
    // TODO: This isn't always correct. Picture generator currently produces textures in N32,
    // and will (soon) emit them in an arbitrary (destination) space. We will need to stash that
    // information in/on the key so we can return the correct space in case #1 of lockTexture.
    CachedFormat format = this->chooseCacheFormat(dstColorSpace, ctx->caps());
    SkImageInfo cacheInfo = this->buildCacheInfo(format);
    return sk_ref_sp(cacheInfo.colorSpace());
}

/*
 *  We have a 5 ways to try to return a texture (in sorted order)
 *
 *  1. Check the cache for a pre-existing one
 *  2. Ask the generator to natively create one
 *  3. Ask the generator to return a compressed form that the GPU might support
 *  4. Ask the generator to return YUV planes, which the GPU can convert
 *  5. Ask the generator to return RGB(A) data, which the GPU can convert
 */
GrTexture* SkImageCacherator::lockTexture(GrContext* ctx, const GrUniqueKey& origKey,
                                          const SkImage* client, SkImage::CachingHint chint,
                                          bool willBeMipped, SkColorSpace* dstColorSpace) {
    // Values representing the various texture lock paths we can take. Used for logging the path
    // taken to a histogram.
    enum LockTexturePath {
        kFailure_LockTexturePath,
        kPreExisting_LockTexturePath,
        kNative_LockTexturePath,
        kCompressed_LockTexturePath,
        kYUV_LockTexturePath,
        kRGBA_LockTexturePath,
    };

    enum { kLockTexturePathCount = kRGBA_LockTexturePath + 1 };

    // Determine which cached format we're going to use (which may involve decoding to a different
    // info than the generator provides).
    CachedFormat format = this->chooseCacheFormat(dstColorSpace, ctx->caps());

    // Fold the cache format into our texture key
    GrUniqueKey key;
    this->makeCacheKeyFromOrigKey(origKey, format, &key);

    // 1. Check the cache for a pre-existing one
    if (key.isValid()) {
        if (GrTexture* tex = ctx->resourceProvider()->findAndRefTextureByUniqueKey(key)) {
            SK_HISTOGRAM_ENUMERATION("LockTexturePath", kPreExisting_LockTexturePath,
                                     kLockTexturePathCount);
            return tex;
        }
    }

    // The CachedFormat is both an index for which cache "slot" we'll use to store this particular
    // decoded variant of the encoded data, and also a recipe for how to transform the original
    // info to get the one that we're going to decode to.
    SkImageInfo cacheInfo = this->buildCacheInfo(format);

    // 2. Ask the generator to natively create one
    {
        ScopedGenerator generator(fSharedGenerator);
        if (sk_sp<GrTextureProxy> proxy = generator->generateTexture(ctx, cacheInfo, fOrigin)) {
            SK_HISTOGRAM_ENUMERATION("LockTexturePath", kNative_LockTexturePath,
                                     kLockTexturePathCount);
            GrTexture* tex2 = proxy->instantiate(ctx->resourceProvider());
            if (tex2) {
                return set_key_and_return(ctx->resourceProvider(), SkRef(tex2), key);
            }
        }
    }

    const GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(cacheInfo, *ctx->caps());

#ifdef SK_SUPPORT_COMPRESSED_TEXTURES_IN_CACHERATOR
    // 3. Ask the generator to return a compressed form that the GPU might support
    sk_sp<SkData> data(this->refEncoded(ctx));
    if (data) {
        GrTexture* tex = load_compressed_into_texture(ctx, data, desc);
        if (tex) {
            SK_HISTOGRAM_ENUMERATION("LockTexturePath", kCompressed_LockTexturePath,
                                     kLockTexturePathCount);
            return set_key_and_return(tex, key);
        }
    }
#endif

    // 4. Ask the generator to return YUV planes, which the GPU can convert
    if (!ctx->contextPriv().disableGpuYUVConversion()) {
        ScopedGenerator generator(fSharedGenerator);
        Generator_GrYUVProvider provider(generator);
        if (sk_sp<GrTextureProxy> proxy = provider.refAsTextureProxy(ctx, desc, true)) {
            SK_HISTOGRAM_ENUMERATION("LockTexturePath", kYUV_LockTexturePath,
                                     kLockTexturePathCount);
            GrTexture* tex2 = proxy->instantiate(ctx->resourceProvider());
            if (tex2) {
                return set_key_and_return(ctx->resourceProvider(), SkRef(tex2), key);
            }
        }
    }

    // 5. Ask the generator to return RGB(A) data, which the GPU can convert
    SkBitmap bitmap;
    if (this->tryLockAsBitmap(&bitmap, client, chint, format, cacheInfo)) {
        GrTexture* tex = nullptr;
        if (willBeMipped) {
            tex = GrGenerateMipMapsAndUploadToTexture(ctx, bitmap, dstColorSpace);
        }
        if (!tex) {
            tex = GrUploadBitmapToTexture(ctx, bitmap);
        }
        if (tex) {
            SK_HISTOGRAM_ENUMERATION("LockTexturePath", kRGBA_LockTexturePath,
                                     kLockTexturePathCount);
            return set_key_and_return(ctx->resourceProvider(), tex, key);
        }
    }
    SK_HISTOGRAM_ENUMERATION("LockTexturePath", kFailure_LockTexturePath,
                             kLockTexturePathCount);
    return nullptr;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

GrTexture* SkImageCacherator::lockAsTexture(GrContext* ctx, const GrSamplerParams& params,
                                            SkColorSpace* dstColorSpace,
                                            sk_sp<SkColorSpace>* texColorSpace,
                                            const SkImage* client,
                                            SkScalar scaleAdjust[2],
                                            SkImage::CachingHint chint) {
    if (!ctx) {
        return nullptr;
    }

    return GrImageTextureMaker(ctx, this, client, chint).refTextureForParams(params, dstColorSpace,
                                                                             texColorSpace,
                                                                             scaleAdjust);
}

#else

GrTexture* SkImageCacherator::lockAsTexture(GrContext* ctx, const GrSamplerParams&,
                                            SkColorSpace* dstColorSpace,
                                            sk_sp<SkColorSpace>* texColorSpace,
                                            const SkImage* client,
                                            SkScalar scaleAdjust[2], SkImage::CachingHint) {
    return nullptr;
}

#endif