1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBmpCodec.h"
#include "SkCodecPriv.h"
#include "SkColorData.h"
#include "SkData.h"
#include "SkIcoCodec.h"
#include "SkPngCodec.h"
#include "SkStream.h"
#include "SkTDArray.h"
#include "SkTSort.h"
/*
* Checks the start of the stream to see if the image is an Ico or Cur
*/
bool SkIcoCodec::IsIco(const void* buffer, size_t bytesRead) {
const char icoSig[] = { '\x00', '\x00', '\x01', '\x00' };
const char curSig[] = { '\x00', '\x00', '\x02', '\x00' };
return bytesRead >= sizeof(icoSig) &&
(!memcmp(buffer, icoSig, sizeof(icoSig)) ||
!memcmp(buffer, curSig, sizeof(curSig)));
}
std::unique_ptr<SkCodec> SkIcoCodec::MakeFromStream(std::unique_ptr<SkStream> stream,
Result* result) {
// Header size constants
constexpr uint32_t kIcoDirectoryBytes = 6;
constexpr uint32_t kIcoDirEntryBytes = 16;
// Read the directory header
std::unique_ptr<uint8_t[]> dirBuffer(new uint8_t[kIcoDirectoryBytes]);
if (stream->read(dirBuffer.get(), kIcoDirectoryBytes) != kIcoDirectoryBytes) {
SkCodecPrintf("Error: unable to read ico directory header.\n");
*result = kIncompleteInput;
return nullptr;
}
// Process the directory header
const uint16_t numImages = get_short(dirBuffer.get(), 4);
if (0 == numImages) {
SkCodecPrintf("Error: No images embedded in ico.\n");
*result = kInvalidInput;
return nullptr;
}
// This structure is used to represent the vital information about entries
// in the directory header. We will obtain this information for each
// directory entry.
struct Entry {
uint32_t offset;
uint32_t size;
};
SkAutoFree dirEntryBuffer(sk_malloc_flags(sizeof(Entry) * numImages,
SK_MALLOC_TEMP));
if (!dirEntryBuffer) {
SkCodecPrintf("Error: OOM allocating ICO directory for %i images.\n",
numImages);
*result = kInternalError;
return nullptr;
}
auto* directoryEntries = reinterpret_cast<Entry*>(dirEntryBuffer.get());
// Iterate over directory entries
for (uint32_t i = 0; i < numImages; i++) {
uint8_t entryBuffer[kIcoDirEntryBytes];
if (stream->read(entryBuffer, kIcoDirEntryBytes) != kIcoDirEntryBytes) {
SkCodecPrintf("Error: Dir entries truncated in ico.\n");
*result = kIncompleteInput;
return nullptr;
}
// The directory entry contains information such as width, height,
// bits per pixel, and number of colors in the color palette. We will
// ignore these fields since they are repeated in the header of the
// embedded image. In the event of an inconsistency, we would always
// defer to the value in the embedded header anyway.
// Specifies the size of the embedded image, including the header
uint32_t size = get_int(entryBuffer, 8);
// Specifies the offset of the embedded image from the start of file.
// It does not indicate the start of the pixel data, but rather the
// start of the embedded image header.
uint32_t offset = get_int(entryBuffer, 12);
// Save the vital fields
directoryEntries[i].offset = offset;
directoryEntries[i].size = size;
}
// Default Result, if no valid embedded codecs are found.
*result = kInvalidInput;
// It is "customary" that the embedded images will be stored in order of
// increasing offset. However, the specification does not indicate that
// they must be stored in this order, so we will not trust that this is the
// case. Here we sort the embedded images by increasing offset.
struct EntryLessThan {
bool operator() (Entry a, Entry b) const {
return a.offset < b.offset;
}
};
EntryLessThan lessThan;
SkTQSort(directoryEntries, &directoryEntries[numImages - 1], lessThan);
// Now will construct a candidate codec for each of the embedded images
uint32_t bytesRead = kIcoDirectoryBytes + numImages * kIcoDirEntryBytes;
std::unique_ptr<SkTArray<std::unique_ptr<SkCodec>, true>> codecs(
new (SkTArray<std::unique_ptr<SkCodec>, true>)(numImages));
for (uint32_t i = 0; i < numImages; i++) {
uint32_t offset = directoryEntries[i].offset;
uint32_t size = directoryEntries[i].size;
// Ensure that the offset is valid
if (offset < bytesRead) {
SkCodecPrintf("Warning: invalid ico offset.\n");
continue;
}
// If we cannot skip, assume we have reached the end of the stream and
// stop trying to make codecs
if (stream->skip(offset - bytesRead) != offset - bytesRead) {
SkCodecPrintf("Warning: could not skip to ico offset.\n");
break;
}
bytesRead = offset;
// Create a new stream for the embedded codec
SkAutoFree buffer(sk_malloc_flags(size, 0));
if (!buffer) {
SkCodecPrintf("Warning: OOM trying to create embedded stream.\n");
break;
}
if (stream->read(buffer.get(), size) != size) {
SkCodecPrintf("Warning: could not create embedded stream.\n");
*result = kIncompleteInput;
break;
}
sk_sp<SkData> data(SkData::MakeFromMalloc(buffer.release(), size));
auto embeddedStream = SkMemoryStream::Make(data);
bytesRead += size;
// Check if the embedded codec is bmp or png and create the codec
std::unique_ptr<SkCodec> codec;
Result dummyResult;
if (SkPngCodec::IsPng((const char*) data->bytes(), data->size())) {
codec = SkPngCodec::MakeFromStream(std::move(embeddedStream), &dummyResult);
} else {
codec = SkBmpCodec::MakeFromIco(std::move(embeddedStream), &dummyResult);
}
// Save a valid codec
if (nullptr != codec) {
codecs->push_back().reset(codec.release());
}
}
// Recognize if there are no valid codecs
if (0 == codecs->count()) {
SkCodecPrintf("Error: could not find any valid embedded ico codecs.\n");
return nullptr;
}
// Use the largest codec as a "suggestion" for image info
size_t maxSize = 0;
int maxIndex = 0;
for (int i = 0; i < codecs->count(); i++) {
SkImageInfo info = codecs->operator[](i)->getInfo();
size_t size = info.computeMinByteSize();
if (size > maxSize) {
maxSize = size;
maxIndex = i;
}
}
int width = codecs->operator[](maxIndex)->getInfo().width();
int height = codecs->operator[](maxIndex)->getInfo().height();
SkEncodedInfo info = codecs->operator[](maxIndex)->getEncodedInfo();
SkColorSpace* colorSpace = codecs->operator[](maxIndex)->getInfo().colorSpace();
*result = kSuccess;
// The original stream is no longer needed, because the embedded codecs own their
// own streams.
return std::unique_ptr<SkCodec>(new SkIcoCodec(width, height, info, codecs.release(),
sk_ref_sp(colorSpace)));
}
/*
* Creates an instance of the decoder
* Called only by NewFromStream
*/
SkIcoCodec::SkIcoCodec(int width, int height, const SkEncodedInfo& info,
SkTArray<std::unique_ptr<SkCodec>, true>* codecs,
sk_sp<SkColorSpace> colorSpace)
// The source SkColorSpaceXform::ColorFormat will not be used. The embedded
// codec's will be used instead.
: INHERITED(width, height, info, SkColorSpaceXform::ColorFormat(), nullptr,
std::move(colorSpace))
, fEmbeddedCodecs(codecs)
, fCurrCodec(nullptr)
{}
/*
* Chooses the best dimensions given the desired scale
*/
SkISize SkIcoCodec::onGetScaledDimensions(float desiredScale) const {
// We set the dimensions to the largest candidate image by default.
// Regardless of the scale request, this is the largest image that we
// will decode.
int origWidth = this->getInfo().width();
int origHeight = this->getInfo().height();
float desiredSize = desiredScale * origWidth * origHeight;
// At least one image will have smaller error than this initial value
float minError = ((float) (origWidth * origHeight)) - desiredSize + 1.0f;
int32_t minIndex = -1;
for (int32_t i = 0; i < fEmbeddedCodecs->count(); i++) {
int width = fEmbeddedCodecs->operator[](i)->getInfo().width();
int height = fEmbeddedCodecs->operator[](i)->getInfo().height();
float error = SkTAbs(((float) (width * height)) - desiredSize);
if (error < minError) {
minError = error;
minIndex = i;
}
}
SkASSERT(minIndex >= 0);
return fEmbeddedCodecs->operator[](minIndex)->getInfo().dimensions();
}
int SkIcoCodec::chooseCodec(const SkISize& requestedSize, int startIndex) {
SkASSERT(startIndex >= 0);
// FIXME: Cache the index from onGetScaledDimensions?
for (int i = startIndex; i < fEmbeddedCodecs->count(); i++) {
if (fEmbeddedCodecs->operator[](i)->getInfo().dimensions() == requestedSize) {
return i;
}
}
return -1;
}
bool SkIcoCodec::onDimensionsSupported(const SkISize& dim) {
return this->chooseCodec(dim, 0) >= 0;
}
/*
* Initiates the Ico decode
*/
SkCodec::Result SkIcoCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& opts,
int* rowsDecoded) {
if (opts.fSubset) {
// Subsets are not supported.
return kUnimplemented;
}
int index = 0;
SkCodec::Result result = kInvalidScale;
while (true) {
index = this->chooseCodec(dstInfo.dimensions(), index);
if (index < 0) {
break;
}
SkCodec* embeddedCodec = fEmbeddedCodecs->operator[](index).get();
result = embeddedCodec->getPixels(dstInfo, dst, dstRowBytes, &opts);
switch (result) {
case kSuccess:
case kIncompleteInput:
// The embedded codec will handle filling incomplete images, so we will indicate
// that all of the rows are initialized.
*rowsDecoded = dstInfo.height();
return result;
default:
// Continue trying to find a valid embedded codec on a failed decode.
break;
}
index++;
}
SkCodecPrintf("Error: No matching candidate image in ico.\n");
return result;
}
SkCodec::Result SkIcoCodec::onStartScanlineDecode(const SkImageInfo& dstInfo,
const SkCodec::Options& options) {
int index = 0;
SkCodec::Result result = kInvalidScale;
while (true) {
index = this->chooseCodec(dstInfo.dimensions(), index);
if (index < 0) {
break;
}
SkCodec* embeddedCodec = fEmbeddedCodecs->operator[](index).get();
result = embeddedCodec->startScanlineDecode(dstInfo, &options);
if (kSuccess == result) {
fCurrCodec = embeddedCodec;
return result;
}
index++;
}
SkCodecPrintf("Error: No matching candidate image in ico.\n");
return result;
}
int SkIcoCodec::onGetScanlines(void* dst, int count, size_t rowBytes) {
SkASSERT(fCurrCodec);
return fCurrCodec->getScanlines(dst, count, rowBytes);
}
bool SkIcoCodec::onSkipScanlines(int count) {
SkASSERT(fCurrCodec);
return fCurrCodec->skipScanlines(count);
}
SkCodec::Result SkIcoCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo,
void* pixels, size_t rowBytes, const SkCodec::Options& options) {
int index = 0;
while (true) {
index = this->chooseCodec(dstInfo.dimensions(), index);
if (index < 0) {
break;
}
SkCodec* embeddedCodec = fEmbeddedCodecs->operator[](index).get();
switch (embeddedCodec->startIncrementalDecode(dstInfo,
pixels, rowBytes, &options)) {
case kSuccess:
fCurrCodec = embeddedCodec;
return kSuccess;
case kUnimplemented:
// FIXME: embeddedCodec is a BMP. If scanline decoding would work,
// return kUnimplemented so that SkSampledCodec will fall through
// to use the scanline decoder.
// Note that calling startScanlineDecode will require an extra
// rewind. The embedded codec has an SkMemoryStream, which is
// cheap to rewind, though it will do extra work re-reading the
// header.
// Also note that we pass nullptr for Options. This is because
// Options that are valid for incremental decoding may not be
// valid for scanline decoding.
// Once BMP supports incremental decoding this workaround can go
// away.
if (embeddedCodec->startScanlineDecode(dstInfo) == kSuccess) {
return kUnimplemented;
}
// Move on to the next embedded codec.
break;
default:
break;
}
index++;
}
SkCodecPrintf("Error: No matching candidate image in ico.\n");
return kInvalidScale;
}
SkCodec::Result SkIcoCodec::onIncrementalDecode(int* rowsDecoded) {
SkASSERT(fCurrCodec);
return fCurrCodec->incrementalDecode(rowsDecoded);
}
SkCodec::SkScanlineOrder SkIcoCodec::onGetScanlineOrder() const {
// FIXME: This function will possibly return the wrong value if it is called
// before startScanlineDecode()/startIncrementalDecode().
if (fCurrCodec) {
return fCurrCodec->getScanlineOrder();
}
return INHERITED::onGetScanlineOrder();
}
SkSampler* SkIcoCodec::getSampler(bool createIfNecessary) {
if (fCurrCodec) {
return fCurrCodec->getSampler(createIfNecessary);
}
return nullptr;
}
|