1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkWriter32_DEFINED
#define SkWriter32_DEFINED
#include "SkData.h"
#include "SkMatrix.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkRRect.h"
#include "SkRect.h"
#include "SkRegion.h"
#include "SkScalar.h"
#include "SkStream.h"
#include "SkTemplates.h"
#include "SkTypes.h"
class SK_API SkWriter32 : SkNoncopyable {
public:
/**
* The caller can specify an initial block of storage, which the caller manages.
*
* SkWriter32 will try to back reserve and write calls with this external storage until the
* first time an allocation doesn't fit. From then it will use dynamically allocated storage.
* This used to be optional behavior, but pipe now relies on it.
*/
SkWriter32(void* external = NULL, size_t externalBytes = 0) {
this->reset(external, externalBytes);
}
// return the current offset (will always be a multiple of 4)
size_t bytesWritten() const { return fUsed; }
SK_ATTR_DEPRECATED("use bytesWritten")
size_t size() const { return this->bytesWritten(); }
void reset(void* external = NULL, size_t externalBytes = 0) {
SkASSERT(SkIsAlign4((uintptr_t)external));
SkASSERT(SkIsAlign4(externalBytes));
fSnapshot.reset(NULL);
fData = (uint8_t*)external;
fCapacity = externalBytes;
fUsed = 0;
fExternal = external;
}
// Returns the current buffer.
// The pointer may be invalidated by any future write calls.
const uint32_t* contiguousArray() const {
return (uint32_t*)fData;
}
// size MUST be multiple of 4
uint32_t* reserve(size_t size) {
SkASSERT(SkAlign4(size) == size);
size_t offset = fUsed;
size_t totalRequired = fUsed + size;
if (totalRequired > fCapacity) {
this->growToAtLeast(totalRequired);
}
fUsed = totalRequired;
return (uint32_t*)(fData + offset);
}
/**
* Read a T record at offset, which must be a multiple of 4. Only legal if the record
* was written atomically using the write methods below.
*/
template<typename T>
const T& readTAt(size_t offset) const {
SkASSERT(SkAlign4(offset) == offset);
SkASSERT(offset < fUsed);
return *(T*)(fData + offset);
}
/**
* Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record
* was written atomically using the write methods below.
*/
template<typename T>
void overwriteTAt(size_t offset, const T& value) {
SkASSERT(SkAlign4(offset) == offset);
SkASSERT(offset < fUsed);
SkASSERT(fSnapshot.get() == NULL);
*(T*)(fData + offset) = value;
}
bool writeBool(bool value) {
this->write32(value);
return value;
}
void writeInt(int32_t value) {
this->write32(value);
}
void write8(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
}
void write16(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
}
void write32(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value;
}
void writePtr(void* value) {
*(void**)this->reserve(sizeof(value)) = value;
}
void writeScalar(SkScalar value) {
*(SkScalar*)this->reserve(sizeof(value)) = value;
}
void writePoint(const SkPoint& pt) {
*(SkPoint*)this->reserve(sizeof(pt)) = pt;
}
void writeRect(const SkRect& rect) {
*(SkRect*)this->reserve(sizeof(rect)) = rect;
}
void writeIRect(const SkIRect& rect) {
*(SkIRect*)this->reserve(sizeof(rect)) = rect;
}
void writeRRect(const SkRRect& rrect) {
rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
}
void writePath(const SkPath& path) {
size_t size = path.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
path.writeToMemory(this->reserve(size));
}
void writeMatrix(const SkMatrix& matrix) {
size_t size = matrix.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
matrix.writeToMemory(this->reserve(size));
}
void writeRegion(const SkRegion& rgn) {
size_t size = rgn.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
rgn.writeToMemory(this->reserve(size));
}
// write count bytes (must be a multiple of 4)
void writeMul4(const void* values, size_t size) {
this->write(values, size);
}
/**
* Write size bytes from values. size must be a multiple of 4, though
* values need not be 4-byte aligned.
*/
void write(const void* values, size_t size) {
SkASSERT(SkAlign4(size) == size);
memcpy(this->reserve(size), values, size);
}
/**
* Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
* filled in with zeroes.
*/
uint32_t* reservePad(size_t size) {
size_t alignedSize = SkAlign4(size);
uint32_t* p = this->reserve(alignedSize);
if (alignedSize != size) {
SkASSERT(alignedSize >= 4);
p[alignedSize / 4 - 1] = 0;
}
return p;
}
/**
* Write size bytes from src, and pad to 4 byte alignment with zeroes.
*/
void writePad(const void* src, size_t size) {
memcpy(this->reservePad(size), src, size);
}
/**
* Writes a string to the writer, which can be retrieved with
* SkReader32::readString().
* The length can be specified, or if -1 is passed, it will be computed by
* calling strlen(). The length must be < max size_t.
*
* If you write NULL, it will be read as "".
*/
void writeString(const char* str, size_t len = (size_t)-1);
/**
* Computes the size (aligned to multiple of 4) need to write the string
* in a call to writeString(). If the length is not specified, it will be
* computed by calling strlen().
*/
static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
/**
* Move the cursor back to offset bytes from the beginning.
* offset must be a multiple of 4 no greater than size().
*/
void rewindToOffset(size_t offset) {
SkASSERT(SkAlign4(offset) == offset);
SkASSERT(offset <= bytesWritten());
fUsed = offset;
}
// copy into a single buffer (allocated by caller). Must be at least size()
void flatten(void* dst) const {
memcpy(dst, fData, fUsed);
}
bool writeToStream(SkWStream* stream) const {
return stream->write(fData, fUsed);
}
// read from the stream, and write up to length bytes. Return the actual
// number of bytes written.
size_t readFromStream(SkStream* stream, size_t length) {
return stream->read(this->reservePad(length), length);
}
/**
* Captures a snapshot of the data as it is right now, and return it.
* Multiple calls without intervening writes may return the same SkData,
* but this is not guaranteed.
* Future appends will not affect the returned buffer.
* It is illegal to call overwriteTAt after this without an intervening
* append. It may cause the snapshot buffer to be corrupted.
* Callers must unref the returned SkData.
* This is not thread safe, it should only be called on the writing thread,
* the result however can be shared across threads.
*/
SkData* snapshotAsData() const;
private:
void growToAtLeast(size_t size);
uint8_t* fData; // Points to either fInternal or fExternal.
size_t fCapacity; // Number of bytes we can write to fData.
size_t fUsed; // Number of bytes written.
void* fExternal; // Unmanaged memory block.
SkAutoTMalloc<uint8_t> fInternal; // Managed memory block.
SkAutoTUnref<SkData> fSnapshot; // Holds the result of last asData.
};
/**
* Helper class to allocated SIZE bytes as part of the writer, and to provide
* that storage to the constructor as its initial storage buffer.
*
* This wrapper ensures proper alignment rules are met for the storage.
*/
template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
public:
SkSWriter32() { this->reset(); }
void reset() {this->INHERITED::reset(fData.fStorage, SIZE); }
private:
union {
void* fPtrAlignment;
double fDoubleAlignment;
char fStorage[SIZE];
} fData;
typedef SkWriter32 INHERITED;
};
#endif
|