1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#include "SkBlurMask.h"
#include "SkBlurMaskFilter.h"
#include "SkCanvas.h"
#include "SkGradientShader.h"
#include "SkImage.h"
#include "SkTDArray.h"
#include "SkUtils.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextOptions.h"
#include "SkGr.h"
#endif
/** Holds either a bitmap or image to be rendered and a rect that indicates what part of the bitmap
or image should be tested by the GM. The area outside of the rect is present to check
for bleed due to filtering/blurring. */
struct TestPixels {
enum Type {
kBitmap,
kImage
};
Type fType;
SkBitmap fBitmap;
sk_sp<SkImage> fImage;
SkIRect fRect; // The region of the bitmap/image that should be rendered.
};
/** Creates a bitmap with two one-pixel rings around a checkerboard. The checkerboard is 2x2
logically where each check has as many pixels as is necessary to fill the interior. The rect
to draw is set to the checkerboard portion. */
template<typename PIXEL_TYPE>
bool make_ringed_bitmap(TestPixels* result, int width, int height,
SkColorType ct, SkAlphaType at,
PIXEL_TYPE outerRingColor, PIXEL_TYPE innerRingColor,
PIXEL_TYPE checkColor1, PIXEL_TYPE checkColor2) {
SkASSERT(0 == width % 2 && 0 == height % 2);
SkASSERT(width >= 6 && height >= 6);
result->fType = TestPixels::kBitmap;
SkImageInfo info = SkImageInfo::Make(width, height, ct, at);
size_t rowBytes = SkAlign4(info.minRowBytes());
result->fBitmap.allocPixels(info, rowBytes);
PIXEL_TYPE* scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, 0);
for (int x = 0; x < width; ++x) {
scanline[x] = outerRingColor;
}
scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, 1);
scanline[0] = outerRingColor;
for (int x = 1; x < width - 1; ++x) {
scanline[x] = innerRingColor;
}
scanline[width - 1] = outerRingColor;
for (int y = 2; y < height / 2; ++y) {
scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, y);
scanline[0] = outerRingColor;
scanline[1] = innerRingColor;
for (int x = 2; x < width / 2; ++x) {
scanline[x] = checkColor1;
}
for (int x = width / 2; x < width - 2; ++x) {
scanline[x] = checkColor2;
}
scanline[width - 2] = innerRingColor;
scanline[width - 1] = outerRingColor;
}
for (int y = height / 2; y < height - 2; ++y) {
scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, y);
scanline[0] = outerRingColor;
scanline[1] = innerRingColor;
for (int x = 2; x < width / 2; ++x) {
scanline[x] = checkColor2;
}
for (int x = width / 2; x < width - 2; ++x) {
scanline[x] = checkColor1;
}
scanline[width - 2] = innerRingColor;
scanline[width - 1] = outerRingColor;
}
scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, height - 2);
scanline[0] = outerRingColor;
for (int x = 1; x < width - 1; ++x) {
scanline[x] = innerRingColor;
}
scanline[width - 1] = outerRingColor;
scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, height - 1);
for (int x = 0; x < width; ++x) {
scanline[x] = outerRingColor;
}
result->fBitmap.setImmutable();
result->fRect.set(2, 2, width - 2, height - 2);
return true;
}
/** Create a black and white checked bitmap with 2 1-pixel rings around the outside edge.
The inner ring is red and the outer ring is blue. */
static bool make_ringed_color_bitmap(TestPixels* result, int width, int height) {
const SkPMColor kBlue = SkPreMultiplyColor(SK_ColorBLUE);
const SkPMColor kRed = SkPreMultiplyColor(SK_ColorRED);
const SkPMColor kBlack = SkPreMultiplyColor(SK_ColorBLACK);
const SkPMColor kWhite = SkPreMultiplyColor(SK_ColorWHITE);
return make_ringed_bitmap<SkPMColor>(result, width, height, kN32_SkColorType,
kPremul_SkAlphaType, kBlue, kRed, kBlack, kWhite);
}
/** Makes a alpha bitmap with 1 wide rect/ring of 0s, an inset of 1s, and the interior is a 2x2
checker board of 3/4 and 1/2. The inner checkers are large enough to fill the interior with
the 2x2 checker grid. */
static bool make_ringed_alpha_bitmap(TestPixels* result, int width, int height) {
constexpr uint8_t kZero = 0x00;
constexpr uint8_t kHalf = 0x80;
constexpr uint8_t k3Q = 0xC0;
constexpr uint8_t kOne = 0xFF;
return make_ringed_bitmap<uint8_t>(result, width, height, kAlpha_8_SkColorType,
kPremul_SkAlphaType, kZero, kOne, k3Q, kHalf);
}
/** Helper to reuse above functions to produce images rather than bmps */
static void bmp_to_image(TestPixels* result) {
SkASSERT(TestPixels::kBitmap == result->fType);
result->fImage = SkImage::MakeFromBitmap(result->fBitmap);
SkASSERT(result->fImage);
result->fType = TestPixels::kImage;
result->fBitmap.reset();
}
/** Color image case. */
bool make_ringed_color_image(TestPixels* result, int width, int height) {
if (make_ringed_color_bitmap(result, width, height)) {
bmp_to_image(result);
return true;
}
return false;
}
/** Alpha image case. */
bool make_ringed_alpha_image(TestPixels* result, int width, int height) {
if (make_ringed_alpha_bitmap(result, width, height)) {
bmp_to_image(result);
return true;
}
return false;
}
static sk_sp<SkShader> make_shader() {
constexpr SkPoint pts[] = { {0, 0}, {20, 20} };
constexpr SkColor colors[] = { SK_ColorGREEN, SK_ColorYELLOW };
return SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkShader::kMirror_TileMode);
}
static sk_sp<SkShader> make_null_shader() { return nullptr; }
enum BleedTest {
kUseBitmap_BleedTest,
kUseImage_BleedTest,
kUseAlphaBitmap_BleedTest,
kUseAlphaImage_BleedTest,
kUseAlphaBitmapShader_BleedTest,
kUseAlphaImageShader_BleedTest,
};
const struct {
const char* fName;
bool (*fPixelMaker)(TestPixels* result, int width, int height);
sk_sp<SkShader> (*fShaderMaker)();
} gBleedRec[] = {
{ "bleed", make_ringed_color_bitmap, make_null_shader },
{ "bleed_image", make_ringed_color_image, make_null_shader },
{ "bleed_alpha_bmp", make_ringed_alpha_bitmap, make_null_shader },
{ "bleed_alpha_image", make_ringed_alpha_image, make_null_shader },
{ "bleed_alpha_bmp_shader", make_ringed_alpha_bitmap, make_shader },
{ "bleed_alpha_image_shader", make_ringed_alpha_image, make_shader },
};
/** This GM exercises the behavior of the drawBitmapRect & drawImageRect calls. Specifically their
handling of :
- SrcRectConstraint(bleed vs.no - bleed)
- handling of the sub - region feature(area - of - interest) of drawBitmap*
- handling of 8888 vs. A8 (including presence of a shader in the A8 case).
In particular, we should never see the padding outside of an SkBitmap's sub - region (green for
8888, 1/4 for alpha). In some instances we can see the two outer rings outside of the area o
interest (i.e., the inner four checks) due to AA or filtering if allowed by the
SrcRectConstraint.
*/
class BleedGM : public skiagm::GM {
public:
BleedGM(BleedTest bt) : fBT(bt){}
protected:
SkString onShortName() override {
return SkString(gBleedRec[fBT].fName);
}
SkISize onISize() override {
return SkISize::Make(1200, 1080);
}
void drawPixels(SkCanvas* canvas, const TestPixels& pixels, const SkRect& src,
const SkRect& dst, const SkPaint* paint,
SkCanvas::SrcRectConstraint constraint) {
if (TestPixels::kBitmap == pixels.fType) {
canvas->drawBitmapRect(pixels.fBitmap, src, dst, paint, constraint);
} else {
canvas->drawImageRect(pixels.fImage.get(), src, dst, paint, constraint);
}
}
// Draw the area of interest of the small image
void drawCase1(SkCanvas* canvas, int transX, int transY, bool aa,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) {
SkRect src = SkRect::Make(fSmallTestPixels.fRect);
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setFilterQuality(filter);
paint.setShader(fShader);
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint);
}
// Draw the area of interest of the large image
void drawCase2(SkCanvas* canvas, int transX, int transY, bool aa,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) {
SkRect src = SkRect::Make(fBigTestPixels.fRect);
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setFilterQuality(filter);
paint.setShader(fShader);
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawPixels(canvas, fBigTestPixels, src, dst, &paint, constraint);
}
// Draw upper-left 1/4 of the area of interest of the large image
void drawCase3(SkCanvas* canvas, int transX, int transY, bool aa,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) {
SkRect src = SkRect::MakeXYWH(SkIntToScalar(fBigTestPixels.fRect.fLeft),
SkIntToScalar(fBigTestPixels.fRect.fTop),
fBigTestPixels.fRect.width()/2.f,
fBigTestPixels.fRect.height()/2.f);
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setFilterQuality(filter);
paint.setShader(fShader);
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawPixels(canvas, fBigTestPixels, src, dst, &paint, constraint);
}
// Draw the area of interest of the small image with a normal blur
void drawCase4(SkCanvas* canvas, int transX, int transY, bool aa,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) {
SkRect src = SkRect::Make(fSmallTestPixels.fRect);
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setFilterQuality(filter);
paint.setMaskFilter(SkBlurMaskFilter::Make(kNormal_SkBlurStyle,
SkBlurMask::ConvertRadiusToSigma(3)));
paint.setShader(fShader);
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint);
}
// Draw the area of interest of the small image with a outer blur
void drawCase5(SkCanvas* canvas, int transX, int transY, bool aa,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) {
SkRect src = SkRect::Make(fSmallTestPixels.fRect);
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setFilterQuality(filter);
paint.setMaskFilter(SkBlurMaskFilter::Make(kOuter_SkBlurStyle,
SkBlurMask::ConvertRadiusToSigma(7)));
paint.setShader(fShader);
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint);
}
void onOnceBeforeDraw() override {
SkAssertResult(gBleedRec[fBT].fPixelMaker(&fSmallTestPixels, kSmallSize, kSmallSize));
SkAssertResult(gBleedRec[fBT].fPixelMaker(&fBigTestPixels, 2 * kMaxTileSize,
2 * kMaxTileSize));
}
void onDraw(SkCanvas* canvas) override {
fShader = gBleedRec[fBT].fShaderMaker();
canvas->clear(SK_ColorGRAY);
SkTDArray<SkMatrix> matrices;
// Draw with identity
*matrices.append() = SkMatrix::I();
// Draw with rotation and scale down in x, up in y.
SkMatrix m;
constexpr SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing);
m.setTranslate(0, kBottom);
m.preRotate(15.f, 0, kBottom + kBlockSpacing);
m.preScale(0.71f, 1.22f);
*matrices.append() = m;
// Align the next set with the middle of the previous in y, translated to the right in x.
SkPoint corners[] = {{0, 0}, { 0, kBottom }, { kWidth, kBottom }, {kWidth, 0} };
matrices[matrices.count()-1].mapPoints(corners, 4);
SkScalar y = (corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4;
SkScalar x = SkTMax(SkTMax(corners[0].fX, corners[1].fX),
SkTMax(corners[2].fX, corners[3].fX));
m.setTranslate(x, y);
m.preScale(0.2f, 0.2f);
*matrices.append() = m;
SkScalar maxX = 0;
for (int antiAlias = 0; antiAlias < 2; ++antiAlias) {
canvas->save();
canvas->translate(maxX, 0);
for (int m = 0; m < matrices.count(); ++m) {
canvas->save();
canvas->concat(matrices[m]);
bool aa = SkToBool(antiAlias);
// First draw a column with no bleeding and no filtering
this->drawCase1(canvas, kCol0X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase2(canvas, kCol0X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase3(canvas, kCol0X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase4(canvas, kCol0X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase5(canvas, kCol0X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
// Then draw a column with no bleeding and low filtering
this->drawCase1(canvas, kCol1X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase2(canvas, kCol1X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase3(canvas, kCol1X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase4(canvas, kCol1X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase5(canvas, kCol1X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
// Then draw a column with no bleeding and high filtering
this->drawCase1(canvas, kCol2X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase2(canvas, kCol2X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase3(canvas, kCol2X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase4(canvas, kCol2X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase5(canvas, kCol2X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
// Then draw a column with bleeding and no filtering (bleed should have no effect w/out blur)
this->drawCase1(canvas, kCol3X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase2(canvas, kCol3X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase3(canvas, kCol3X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase4(canvas, kCol3X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
this->drawCase5(canvas, kCol3X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
// Then draw a column with bleeding and low filtering
this->drawCase1(canvas, kCol4X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase2(canvas, kCol4X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase3(canvas, kCol4X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase4(canvas, kCol4X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
this->drawCase5(canvas, kCol4X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
// Finally draw a column with bleeding and high filtering
this->drawCase1(canvas, kCol5X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase2(canvas, kCol5X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase3(canvas, kCol5X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase4(canvas, kCol5X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
this->drawCase5(canvas, kCol5X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
SkPoint corners[] = { { 0, 0 },{ 0, kBottom },{ kWidth, kBottom },{ kWidth, 0 } };
matrices[m].mapPoints(corners, 4);
SkScalar x = kBlockSize + SkTMax(SkTMax(corners[0].fX, corners[1].fX),
SkTMax(corners[2].fX, corners[3].fX));
maxX = SkTMax(maxX, x);
canvas->restore();
}
canvas->restore();
}
}
#if SK_SUPPORT_GPU
void modifyGrContextOptions(GrContextOptions* options) override {
options->fMaxTileSizeOverride = kMaxTileSize;
}
#endif
private:
static constexpr int kBlockSize = 70;
static constexpr int kBlockSpacing = 12;
static constexpr int kCol0X = kBlockSpacing;
static constexpr int kCol1X = 2*kBlockSpacing + kBlockSize;
static constexpr int kCol2X = 3*kBlockSpacing + 2*kBlockSize;
static constexpr int kCol3X = 4*kBlockSpacing + 3*kBlockSize;
static constexpr int kCol4X = 5*kBlockSpacing + 4*kBlockSize;
static constexpr int kCol5X = 6*kBlockSpacing + 5*kBlockSize;
static constexpr int kWidth = 7*kBlockSpacing + 6*kBlockSize;
static constexpr int kRow0Y = kBlockSpacing;
static constexpr int kRow1Y = 2*kBlockSpacing + kBlockSize;
static constexpr int kRow2Y = 3*kBlockSpacing + 2*kBlockSize;
static constexpr int kRow3Y = 4*kBlockSpacing + 3*kBlockSize;
static constexpr int kRow4Y = 5*kBlockSpacing + 4*kBlockSize;
static constexpr int kSmallSize = 6;
static constexpr int kMaxTileSize = 32;
TestPixels fBigTestPixels;
TestPixels fSmallTestPixels;
sk_sp<SkShader> fShader;
const BleedTest fBT;
typedef GM INHERITED;
};
DEF_GM( return new BleedGM(kUseBitmap_BleedTest); )
DEF_GM( return new BleedGM(kUseImage_BleedTest); )
DEF_GM( return new BleedGM(kUseAlphaBitmap_BleedTest); )
DEF_GM( return new BleedGM(kUseAlphaImage_BleedTest); )
DEF_GM( return new BleedGM(kUseAlphaBitmapShader_BleedTest); )
DEF_GM( return new BleedGM(kUseAlphaImageShader_BleedTest); )
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkSurface.h"
sk_sp<SkSurface> make_surface(SkCanvas* canvas, const SkImageInfo& info) {
auto surface = canvas->makeSurface(info);
if (!surface) {
surface = SkSurface::MakeRaster(info);
}
return surface;
}
// Construct an image and return the inner "src" rect. Build the image such that the interior is
// blue, with a margin of blue (2px) but then an outer margin of red.
//
// Show that kFast_SrcRectConstraint sees even the red margin (due to mipmapping) when the image
// is scaled down far enough.
//
static sk_sp<SkImage> make_image(SkCanvas* canvas, SkRect* srcR) {
// Intentially making the size a power of 2 to avoid the noise from how different GPUs will
// produce different mipmap filtering when we have an odd sized texture.
const int N = 10 + 2 + 8 + 2 + 10;
SkImageInfo info = SkImageInfo::MakeN32Premul(N, N);
auto surface = make_surface(canvas, info);
SkCanvas* c = surface->getCanvas();
SkRect r = SkRect::MakeIWH(info.width(), info.height());
SkPaint paint;
paint.setColor(SK_ColorRED);
c->drawRect(r, paint);
r.inset(10, 10);
paint.setColor(SK_ColorBLUE);
c->drawRect(r, paint);
*srcR = r.makeInset(2, 2);
return surface->makeImageSnapshot();
}
DEF_SIMPLE_GM(bleed_downscale, canvas, 360, 240) {
SkRect src;
sk_sp<SkImage> img = make_image(canvas, &src);
SkPaint paint;
canvas->translate(10, 10);
const SkCanvas::SrcRectConstraint constraints[] = {
SkCanvas::kStrict_SrcRectConstraint, SkCanvas::kFast_SrcRectConstraint
};
const SkFilterQuality qualities[] = {
kNone_SkFilterQuality, kLow_SkFilterQuality, kMedium_SkFilterQuality
};
for (auto constraint : constraints) {
canvas->save();
for (auto quality : qualities) {
paint.setFilterQuality(quality);
auto surf = make_surface(canvas, SkImageInfo::MakeN32Premul(1, 1));
surf->getCanvas()->drawImageRect(img, src, SkRect::MakeWH(1, 1), &paint, constraint);
// now blow up the 1 pixel result
canvas->drawImageRect(surf->makeImageSnapshot(), SkRect::MakeWH(100, 100), nullptr);
canvas->translate(120, 0);
}
canvas->restore();
canvas->translate(0, 120);
}
}
|