aboutsummaryrefslogtreecommitdiffhomepage
path: root/fuzz/fuzz.cpp
blob: 67207543e7aecd3c98ab9d4db8e7f84b0326f786 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Fuzz.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommandLineFlags.h"
#include "SkData.h"
#include "SkImage.h"
#include "SkImageEncoder.h"
#include "SkMallocPixelRef.h"
#include "SkPath.h"
#include "SkOSFile.h"
#include "SkOSPath.h"
#include "SkPicture.h"
#if SK_SUPPORT_GPU
#include "SkSLCompiler.h"
#endif
#include "SkStream.h"

#include <signal.h>

#include "sk_tool_utils.h"

DEFINE_string2(bytes, b, "", "A path to a file or a directory. If a file, the contents will be used as the fuzz bytes. If a directory, all files in the directory will be used as fuzz bytes for the fuzzer, one at a time.");
DEFINE_string2(name, n, "", "If --type is 'api', fuzz the API with this name.");

DEFINE_string2(type, t, "api", "How to interpret --bytes, either 'image_scale', 'image_mode', 'skp', 'icc', or 'api'.");
DEFINE_string2(dump, d, "", "If not empty, dump 'image*' or 'skp' types as a PNG with this name.");

static int printUsage() {
    SkDebugf("Usage: fuzz -t <type> -b <path/to/file> [-n api-to-fuzz]\n");
    return 1;
}
static int fuzz_file(const char* path);
static uint8_t calculate_option(SkData*);

static void fuzz_api(sk_sp<SkData>);
static void fuzz_color_deserialize(sk_sp<SkData>);
static void fuzz_icc(sk_sp<SkData>);
static void fuzz_img(sk_sp<SkData>, uint8_t, uint8_t);
static void fuzz_path_deserialize(sk_sp<SkData>);
static void fuzz_skp(sk_sp<SkData>);
#if SK_SUPPORT_GPU
static void fuzz_sksl2glsl(sk_sp<SkData>);
#endif

int main(int argc, char** argv) {
    SkCommandLineFlags::Parse(argc, argv);

    const char* path = FLAGS_bytes.isEmpty() ? argv[0] : FLAGS_bytes[0];

    if (!sk_isdir(path)) {
        return fuzz_file(path);
    }

    SkOSFile::Iter it(path);
    for (SkString file; it.next(&file); ) {
        SkString p = SkOSPath::Join(path, file.c_str());
        SkDebugf("Fuzzing %s\n", p.c_str());
        int rv = fuzz_file(p.c_str());
        if (rv != 0) {
            return rv;
        }
    }
    return 0;
}

static int fuzz_file(const char* path) {
    sk_sp<SkData> bytes(SkData::MakeFromFileName(path));
    if (!bytes) {
        SkDebugf("Could not read %s\n", path);
        return 1;
    }

    uint8_t option = calculate_option(bytes.get());

    if (!FLAGS_type.isEmpty()) {
        if (0 == strcmp("api", FLAGS_type[0])) {
            fuzz_api(bytes);
            return 0;
        }
        if (0 == strcmp("color_deserialize", FLAGS_type[0])) {
            fuzz_color_deserialize(bytes);
            return 0;
        }
        if (0 == strcmp("icc", FLAGS_type[0])) {
            fuzz_icc(bytes);
            return 0;
        }
        if (0 == strcmp("image_scale", FLAGS_type[0])) {
            fuzz_img(bytes, option, 0);
            return 0;
        }
        if (0 == strcmp("image_mode", FLAGS_type[0])) {
            fuzz_img(bytes, 0, option);
            return 0;
        }
        if (0 == strcmp("path_deserialize", FLAGS_type[0])) {
            fuzz_path_deserialize(bytes);
            return 0;
        }
        if (0 == strcmp("skp", FLAGS_type[0])) {
            fuzz_skp(bytes);
            return 0;
        }
#if SK_SUPPORT_GPU
        if (0 == strcmp("sksl2glsl", FLAGS_type[0])) {
            fuzz_sksl2glsl(bytes);
            return 0;
        }
#endif
    }
    return printUsage();
}

// This adds up the first 1024 bytes and returns it as an 8 bit integer.  This allows afl-fuzz to
// deterministically excercise different paths, or *options* (such as different scaling sizes or
// different image modes) without needing to introduce a parameter.  This way we don't need a
// image_scale1, image_scale2, image_scale4, etc fuzzer, we can just have a image_scale fuzzer.
// Clients are expected to transform this number into a different range, e.g. with modulo (%).
static uint8_t calculate_option(SkData* bytes) {
    uint8_t total = 0;
    const uint8_t* data = bytes->bytes();
    for (size_t i = 0; i < 1024 && i < bytes->size(); i++) {
        total += data[i];
    }
    return total;
}

static void fuzz_api(sk_sp<SkData> bytes) {
    const char* name = FLAGS_name.isEmpty() ? "" : FLAGS_name[0];

    for (auto r = sk_tools::Registry<Fuzzable>::Head(); r; r = r->next()) {
        auto fuzzable = r->factory();
        if (0 == strcmp(name, fuzzable.name)) {
            SkDebugf("Fuzzing %s...\n", fuzzable.name);
            Fuzz fuzz(bytes);
            fuzzable.fn(&fuzz);
            SkDebugf("[terminated] Success!\n");
            return;
        }
    }

    SkDebugf("When using --type api, please choose an API to fuzz with --name/-n:\n");
    for (auto r = sk_tools::Registry<Fuzzable>::Head(); r; r = r->next()) {
        auto fuzzable = r->factory();
        SkDebugf("\t%s\n", fuzzable.name);
    }
}

static void dump_png(SkBitmap bitmap) {
    if (!FLAGS_dump.isEmpty()) {
        sk_tool_utils::EncodeImageToFile(FLAGS_dump[0], bitmap, SkEncodedImageFormat::kPNG, 100);
        SkDebugf("Dumped to %s\n", FLAGS_dump[0]);
    }
}

static void fuzz_img(sk_sp<SkData> bytes, uint8_t scale, uint8_t mode) {
    // We can scale 1x, 2x, 4x, 8x, 16x
    scale = scale % 5;
    float fscale = (float)pow(2.0f, scale);
    SkDebugf("Scaling factor: %f\n", fscale);

    // We have 5 different modes of decoding.
    mode = mode % 5;
    SkDebugf("Mode: %d\n", mode);

    // This is mostly copied from DMSrcSink's CodecSrc::draw method.
    SkDebugf("Decoding\n");
    std::unique_ptr<SkCodec> codec(SkCodec::NewFromData(bytes));
    if (nullptr == codec.get()) {
        SkDebugf("[terminated] Couldn't create codec.\n");
        return;
    }

    SkImageInfo decodeInfo = codec->getInfo();
    if (4 == mode && decodeInfo.colorType() == kIndex_8_SkColorType) {
        // 4 means animated. Frames beyond the first cannot be decoded to
        // index 8.
        decodeInfo = decodeInfo.makeColorType(kN32_SkColorType);
    }

    SkISize size = codec->getScaledDimensions(fscale);
    decodeInfo = decodeInfo.makeWH(size.width(), size.height());

    // Construct a color table for the decode if necessary
    sk_sp<SkColorTable> colorTable(nullptr);
    SkPMColor* colorPtr = nullptr;
    int* colorCountPtr = nullptr;
    int maxColors = 256;
    if (kIndex_8_SkColorType == decodeInfo.colorType()) {
        SkPMColor colors[256];
        colorTable.reset(new SkColorTable(colors, maxColors));
        colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
        colorCountPtr = &maxColors;
    }

    SkBitmap bitmap;
    SkMallocPixelRef::ZeroedPRFactory zeroFactory;
    SkCodec::Options options;
    options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;

    if (!bitmap.tryAllocPixels(decodeInfo, &zeroFactory, colorTable.get())) {
        SkDebugf("[terminated] Could not allocate memory.  Image might be too large (%d x %d)",
                 decodeInfo.width(), decodeInfo.height());
        return;
    }

    switch (mode) {
        case 0: {//kCodecZeroInit_Mode, kCodec_Mode
            switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options,
                                     colorPtr, colorCountPtr)) {
                case SkCodec::kSuccess:
                    SkDebugf("[terminated] Success!\n");
                    break;
                case SkCodec::kIncompleteInput:
                    SkDebugf("[terminated] Partial Success\n");
                    break;
                case SkCodec::kInvalidConversion:
                    SkDebugf("Incompatible colortype conversion\n");
                    // Crash to allow afl-fuzz to know this was a bug.
                    raise(SIGSEGV);
                default:
                    SkDebugf("[terminated] Couldn't getPixels.\n");
                    return;
            }
            break;
        }
        case 1: {//kScanline_Mode
            if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
                                                                colorCountPtr)) {
                    SkDebugf("[terminated] Could not start scanline decoder\n");
                    return;
                }

            void* dst = bitmap.getAddr(0, 0);
            size_t rowBytes = bitmap.rowBytes();
            uint32_t height = decodeInfo.height();
            switch (codec->getScanlineOrder()) {
                case SkCodec::kTopDown_SkScanlineOrder:
                case SkCodec::kBottomUp_SkScanlineOrder:
                    // We do not need to check the return value.  On an incomplete
                    // image, memory will be filled with a default value.
                    codec->getScanlines(dst, height, rowBytes);
                    break;
            }
            SkDebugf("[terminated] Success!\n");
            break;
        }
        case 2: { //kStripe_Mode
            const int height = decodeInfo.height();
            // This value is chosen arbitrarily.  We exercise more cases by choosing a value that
            // does not align with image blocks.
            const int stripeHeight = 37;
            const int numStripes = (height + stripeHeight - 1) / stripeHeight;

            // Decode odd stripes
            if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
                                                                colorCountPtr)
                    || SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) {
                // This mode was designed to test the new skip scanlines API in libjpeg-turbo.
                // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
                // to run this test for image types that do not have this scanline ordering.
                SkDebugf("[terminated] Could not start top-down scanline decoder\n");
                return;
            }

            for (int i = 0; i < numStripes; i += 2) {
                // Skip a stripe
                const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
                codec->skipScanlines(linesToSkip);

                // Read a stripe
                const int startY = (i + 1) * stripeHeight;
                const int linesToRead = SkTMin(stripeHeight, height - startY);
                if (linesToRead > 0) {
                    codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
                }
            }

            // Decode even stripes
            const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
                    colorPtr, colorCountPtr);
            if (SkCodec::kSuccess != startResult) {
                SkDebugf("[terminated] Failed to restart scanline decoder with same parameters.\n");
                return;
            }
            for (int i = 0; i < numStripes; i += 2) {
                // Read a stripe
                const int startY = i * stripeHeight;
                const int linesToRead = SkTMin(stripeHeight, height - startY);
                codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());

                // Skip a stripe
                const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
                if (linesToSkip > 0) {
                    codec->skipScanlines(linesToSkip);
                }
            }
            SkDebugf("[terminated] Success!\n");
            break;
        }
        case 3: { //kSubset_Mode
            // Arbitrarily choose a divisor.
            int divisor = 2;
            // Total width/height of the image.
            const int W = codec->getInfo().width();
            const int H = codec->getInfo().height();
            if (divisor > W || divisor > H) {
                SkDebugf("[terminated] Cannot codec subset: divisor %d is too big "
                         "with dimensions (%d x %d)\n", divisor, W, H);
                return;
            }
            // subset dimensions
            // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
            const int w = SkAlign2(W / divisor);
            const int h = SkAlign2(H / divisor);
            SkIRect subset;
            SkCodec::Options opts;
            opts.fSubset = &subset;
            SkBitmap subsetBm;
            // We will reuse pixel memory from bitmap.
            void* pixels = bitmap.getPixels();
            // Keep track of left and top (for drawing subsetBm into canvas). We could use
            // fscale * x and fscale * y, but we want integers such that the next subset will start
            // where the last one ended. So we'll add decodeInfo.width() and height().
            int left = 0;
            for (int x = 0; x < W; x += w) {
                int top = 0;
                for (int y = 0; y < H; y+= h) {
                    // Do not make the subset go off the edge of the image.
                    const int preScaleW = SkTMin(w, W - x);
                    const int preScaleH = SkTMin(h, H - y);
                    subset.setXYWH(x, y, preScaleW, preScaleH);
                    // And fscale
                    // FIXME: Should we have a version of getScaledDimensions that takes a subset
                    // into account?
                    decodeInfo = decodeInfo.makeWH(
                            SkTMax(1, SkScalarRoundToInt(preScaleW * fscale)),
                            SkTMax(1, SkScalarRoundToInt(preScaleH * fscale)));
                    size_t rowBytes = decodeInfo.minRowBytes();
                    if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
                                                nullptr, nullptr)) {
                        SkDebugf("[terminated] Could not install pixels.\n");
                        return;
                    }
                    const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
                            &opts, colorPtr, colorCountPtr);
                    switch (result) {
                        case SkCodec::kSuccess:
                        case SkCodec::kIncompleteInput:
                            SkDebugf("okay\n");
                            break;
                        case SkCodec::kInvalidConversion:
                            if (0 == (x|y)) {
                                // First subset is okay to return unimplemented.
                                SkDebugf("[terminated] Incompatible colortype conversion\n");
                                return;
                            }
                            // If the first subset succeeded, a later one should not fail.
                            // fall through to failure
                        case SkCodec::kUnimplemented:
                            if (0 == (x|y)) {
                                // First subset is okay to return unimplemented.
                                SkDebugf("[terminated] subset codec not supported\n");
                                return;
                            }
                            // If the first subset succeeded, why would a later one fail?
                            // fall through to failure
                        default:
                            SkDebugf("[terminated] subset codec failed to decode (%d, %d, %d, %d) "
                                                  "with dimensions (%d x %d)\t error %d\n",
                                                  x, y, decodeInfo.width(), decodeInfo.height(),
                                                  W, H, result);
                            return;
                    }
                    // translate by the scaled height.
                    top += decodeInfo.height();
                }
                // translate by the scaled width.
                left += decodeInfo.width();
            }
            SkDebugf("[terminated] Success!\n");
            break;
        }
        case 4: { //kAnimated_Mode
            std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo();
            if (frameInfos.size() == 0) {
                SkDebugf("[terminated] Not an animated image\n");
                break;
            }

            for (size_t i = 0; i < frameInfos.size(); i++) {
                options.fFrameIndex = i;
                auto result = codec->startIncrementalDecode(decodeInfo, bitmap.getPixels(),
                        bitmap.rowBytes(), &options);
                if (SkCodec::kSuccess != result) {
                    SkDebugf("[terminated] failed to start incremental decode "
                             "in frame %d with error %d\n", i, result);
                    return;
                }

                result = codec->incrementalDecode();
                if (result == SkCodec::kIncompleteInput) {
                    SkDebugf("okay\n");
                    // Frames beyond this one will not decode.
                    break;
                }
                if (result == SkCodec::kSuccess) {
                    SkDebugf("okay - decoded frame %d\n", i);
                } else {
                    SkDebugf("[terminated] incremental decode failed with "
                             "error %d\n", result);
                    return;
                }
            }
            SkDebugf("[terminated] Success!\n");
            break;
        }
        default:
            SkDebugf("[terminated] Mode not implemented yet\n");
    }

    dump_png(bitmap);
}

static void fuzz_skp(sk_sp<SkData> bytes) {
    SkMemoryStream stream(bytes);
    SkDebugf("Decoding\n");
    sk_sp<SkPicture> pic(SkPicture::MakeFromStream(&stream));
    if (!pic) {
        SkDebugf("[terminated] Couldn't decode as a picture.\n");
        return;
    }
    SkDebugf("Rendering\n");
    SkBitmap bitmap;
    if (!FLAGS_dump.isEmpty()) {
        SkIRect size = pic->cullRect().roundOut();
        bitmap.allocN32Pixels(size.width(), size.height());
    }
    SkCanvas canvas(bitmap);
    canvas.drawPicture(pic);
    SkDebugf("[terminated] Success! Decoded and rendered an SkPicture!\n");
    dump_png(bitmap);
}

static void fuzz_icc(sk_sp<SkData> bytes) {
    sk_sp<SkColorSpace> space(SkColorSpace::MakeICC(bytes->data(), bytes->size()));
    if (!space) {
        SkDebugf("[terminated] Couldn't decode ICC.\n");
        return;
    }
    SkDebugf("[terminated] Success! Decoded ICC.\n");
}

static void fuzz_color_deserialize(sk_sp<SkData> bytes) {
    sk_sp<SkColorSpace> space(SkColorSpace::Deserialize(bytes->data(), bytes->size()));
    if (!space) {
        SkDebugf("[terminated] Couldn't deserialize Colorspace.\n");
        return;
    }
    SkDebugf("[terminated] Success! deserialized Colorspace.\n");
}

static void fuzz_path_deserialize(sk_sp<SkData> bytes) {
    SkPath path;
    if (!path.readFromMemory(bytes->data(), bytes->size())) {
        SkDebugf("[terminated] Couldn't initialize SkPath.\n");
        return;
    }
    SkDebugf("[terminated] Success! Initialized SkPath.\n");
}

#if SK_SUPPORT_GPU
static void fuzz_sksl2glsl(sk_sp<SkData> bytes) {
    SkSL::Compiler compiler;
    SkString output;
    SkSL::Program::Settings settings;
    sk_sp<GrShaderCaps> caps = SkSL::ShaderCapsFactory::Default();
    settings.fCaps = caps.get();
    std::unique_ptr<SkSL::Program> program = compiler.convertProgram(SkSL::Program::kFragment_Kind,
                                                              SkString((const char*) bytes->data()),
                                                              settings);
    if (!program || !compiler.toGLSL(*program, &output)) {
        SkDebugf("[terminated] Couldn't compile input.\n");
        return;
    }
    SkDebugf("[terminated] Success! Compiled input.\n");
}
#endif

Fuzz::Fuzz(sk_sp<SkData> bytes) : fBytes(bytes), fNextByte(0) {}

void Fuzz::signalBug() { SkDebugf("Signal bug\n"); raise(SIGSEGV); }

size_t Fuzz::size() { return fBytes->size(); }

bool Fuzz::exhausted() {
    return fBytes->size() == fNextByte;
}