/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkCodec.h" #include "SkColorSpace.h" #include "SkCommandLineFlags.h" #include "SkForceLinking.h" #include "SkImageEncoder.h" #include "SkMatrix44.h" #include "SkOSFile.h" __SK_FORCE_IMAGE_DECODER_LINKING; DEFINE_string2(input, i, "input.png", "A path to the input image."); DEFINE_string2(output, o, "output.png", "A path to the output image."); /** * Loads the triangular gamut as a set of three points. */ static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) { // rx = rX / (rX + rY + rZ) // ry = rX / (rX + rY + rZ) // gx, gy, bx, and gy are calulcated similarly. float rSum = xyz.get(0, 0) + xyz.get(0, 1) + xyz.get(0, 2); float gSum = xyz.get(1, 0) + xyz.get(1, 1) + xyz.get(1, 2); float bSum = xyz.get(2, 0) + xyz.get(2, 1) + xyz.get(2, 2); rgb[0].fX = xyz.get(0, 0) / rSum; rgb[0].fY = xyz.get(0, 1) / rSum; rgb[1].fX = xyz.get(1, 0) / gSum; rgb[1].fY = xyz.get(1, 1) / gSum; rgb[2].fX = xyz.get(2, 0) / bSum; rgb[2].fY = xyz.get(2, 1) / bSum; } /** * Calculates the area of the triangular gamut. */ float calculate_area(SkPoint abc[]) { SkPoint a = abc[0]; SkPoint b = abc[1]; SkPoint c = abc[2]; return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY); } int main(int argc, char** argv) { SkCommandLineFlags::SetUsage( "Usage: visualize_color_gamut --input " "--output \n" "Description: Writes a visualization of the color gamut to the output image\n"); SkCommandLineFlags::Parse(argc, argv); const char* input = FLAGS_input[0]; const char* output = FLAGS_output[0]; if (!input || !output) { SkCommandLineFlags::PrintUsage(); return -1; } SkAutoTUnref data(SkData::NewFromFileName(input)); if (!data) { SkDebugf("Cannot find input image.\n"); return -1; } SkAutoTDelete codec(SkCodec::NewFromData(data)); if (!codec) { SkDebugf("Invalid input image.\n"); return -1; } // Load a graph of the CIE XYZ color gamut. SkBitmap bitmap; if (!GetResourceAsBitmap("gamut.png", &bitmap)) { SkDebugf("Program failure.\n"); return -1; } SkCanvas canvas(bitmap); sk_sp colorSpace = sk_ref_sp(codec->getColorSpace()); if (!colorSpace) { SkDebugf("Image had no embedded color space information. Defaulting to sRGB.\n"); colorSpace = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named); } // Calculate the points in the gamut from the XYZ values. SkMatrix44 xyz = colorSpace->xyz(); SkPoint rgb[4]; load_gamut(rgb, xyz); // Report the XYZ values. SkDebugf(" X Y Z\n"); SkDebugf("Red %.2f %.2f %.2f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2)); SkDebugf("Green %.2f %.2f %.2f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2)); SkDebugf("Blue %.2f %.2f %.2f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2)); // Report the area of the gamut. SkDebugf("Area of Gamut: %g\n", calculate_area(rgb)); // Now transform the points so they can be drawn on our canvas. We use 1000 pixels // to represent the space from 0 to 1. Note that the graph is at an offset of (50, 50). // Also note that y increases as we move down the canvas. rgb[0].fX = 50 + 1000*rgb[0].fX; rgb[0].fY = 50 + 1000*(1 - rgb[0].fY); rgb[1].fX = 50 + 1000*rgb[1].fX; rgb[1].fY = 50 + 1000*(1 - rgb[1].fY); rgb[2].fX = 50 + 1000*rgb[2].fX; rgb[2].fY = 50 + 1000*(1 - rgb[2].fY); // Repeat the first point to connect the polygon. rgb[3] = rgb[0]; SkPaint paint; canvas.drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint); // Finally, encode the result to out.png. SkAutoTUnref out(SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100)); if (!out) { SkDebugf("Failed to encode output.\n"); return -1; } SkFILEWStream stream(output); bool result = stream.write(out->data(), out->size()); if (!result) { SkDebugf("Failed to write output.\n"); return -1; } return 0; }