/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "sk_tool_utils.h" #include "sk_tool_utils_flags.h" #include "Resources.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkCommonFlags.h" #include "SkFontMgr.h" #include "SkFontStyle.h" #include "SkPixelRef.h" #include "SkPoint3.h" #include "SkShader.h" #include "SkTestScalerContext.h" #include "SkTextBlob.h" DEFINE_bool(portableFonts, false, "Use portable fonts"); #if SK_SUPPORT_GPU #include "effects/GrSRGBEffect.h" #include "SkColorFilter.h" // Color filter that just wraps GrSRGBEffect class SkSRGBColorFilter : public SkColorFilter { public: static sk_sp Make(GrSRGBEffect::Mode mode) { return sk_sp(new SkSRGBColorFilter(mode)); } sk_sp asFragmentProcessor(GrContext*, SkColorSpace*) const override { return GrSRGBEffect::Make(fMode); } void filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const override { SK_ABORT("SkSRGBColorFilter is only implemented for GPU"); } void filterSpan4f(const SkPM4f src[], int count, SkPM4f dst[]) const override { SK_ABORT("SkSRGBColorFilter is only implemented for GPU"); } Factory getFactory() const override { return nullptr; } #ifndef SK_IGNORE_TO_STRING void toString(SkString* str) const override {} #endif private: SkSRGBColorFilter(GrSRGBEffect::Mode mode) : fMode(mode) {} GrSRGBEffect::Mode fMode; typedef SkColorFilter INHERITED; }; #endif namespace sk_tool_utils { /* these are the default fonts chosen by Chrome for serif, sans-serif, and monospace */ static const char* gStandardFontNames[][3] = { { "Times", "Helvetica", "Courier" }, // Mac { "Times New Roman", "Helvetica", "Courier" }, // iOS { "Times New Roman", "Arial", "Courier New" }, // Win { "Times New Roman", "Arial", "Monospace" }, // Ubuntu { "serif", "sans-serif", "monospace" }, // Android { "Tinos", "Arimo", "Cousine" } // ChromeOS }; const char* platform_font_name(const char* name) { SkString platform = major_platform_os_name(); int index; if (!strcmp(name, "serif")) { index = 0; } else if (!strcmp(name, "san-serif")) { index = 1; } else if (!strcmp(name, "monospace")) { index = 2; } else { return name; } if (platform.equals("Mac")) { return gStandardFontNames[0][index]; } if (platform.equals("iOS")) { return gStandardFontNames[1][index]; } if (platform.equals("Win")) { return gStandardFontNames[2][index]; } if (platform.equals("Ubuntu")) { return gStandardFontNames[3][index]; } if (platform.equals("Android")) { return gStandardFontNames[4][index]; } if (platform.equals("ChromeOS")) { return gStandardFontNames[5][index]; } return name; } const char* platform_os_emoji() { const char* osName = platform_os_name(); if (!strcmp(osName, "Android") || !strcmp(osName, "Ubuntu")) { return "CBDT"; } if (!strncmp(osName, "Mac", 3) || !strncmp(osName, "iOS", 3)) { return "SBIX"; } if (!strncmp(osName, "Win", 3)) { return "COLR"; } return ""; } sk_sp emoji_typeface() { if (!strcmp(sk_tool_utils::platform_os_emoji(), "CBDT")) { return MakeResourceAsTypeface("/fonts/Funkster.ttf"); } if (!strcmp(sk_tool_utils::platform_os_emoji(), "SBIX")) { return SkTypeface::MakeFromName("Apple Color Emoji", SkFontStyle()); } if (!strcmp(sk_tool_utils::platform_os_emoji(), "COLR")) { sk_sp fm(SkFontMgr::RefDefault()); const char *colorEmojiFontName = "Segoe UI Emoji"; sk_sp typeface(fm->matchFamilyStyle(colorEmojiFontName, SkFontStyle())); if (typeface) { return typeface; } sk_sp fallback(fm->matchFamilyStyleCharacter( colorEmojiFontName, SkFontStyle(), nullptr /* bcp47 */, 0 /* bcp47Count */, 0x1f4b0 /* character: πŸ’° */)); if (fallback) { return fallback; } // If we don't have Segoe UI Emoji and can't find a fallback, try Segoe UI Symbol. // Windows 7 does not have Segoe UI Emoji; Segoe UI Symbol has the (non - color) emoji. return SkTypeface::MakeFromName("Segoe UI Symbol", SkFontStyle()); } return nullptr; } const char* emoji_sample_text() { if (!strcmp(sk_tool_utils::platform_os_emoji(), "CBDT")) { return "Hamburgefons"; } if (!strcmp(sk_tool_utils::platform_os_emoji(), "SBIX") || !strcmp(sk_tool_utils::platform_os_emoji(), "COLR")) { return "\xF0\x9F\x92\xB0" "\xF0\x9F\x8F\xA1" "\xF0\x9F\x8E\x85" // πŸ’°πŸ‘πŸŽ… "\xF0\x9F\x8D\xAA" "\xF0\x9F\x8D\x95" "\xF0\x9F\x9A\x80" // πŸͺπŸ•πŸš€ "\xF0\x9F\x9A\xBB" "\xF0\x9F\x92\xA9" "\xF0\x9F\x93\xB7" // πŸš»πŸ’©πŸ“· "\xF0\x9F\x93\xA6" // πŸ“¦ "\xF0\x9F\x87\xBA" "\xF0\x9F\x87\xB8" "\xF0\x9F\x87\xA6"; // πŸ‡ΊπŸ‡ΈπŸ‡¦ } return ""; } const char* platform_os_name() { for (int index = 0; index < FLAGS_key.count(); index += 2) { if (!strcmp("os", FLAGS_key[index])) { return FLAGS_key[index + 1]; } } // when running SampleApp or dm without a --key pair, omit the platform name return ""; } // omit version number in returned value SkString major_platform_os_name() { SkString name; for (int index = 0; index < FLAGS_key.count(); index += 2) { if (!strcmp("os", FLAGS_key[index])) { const char* platform = FLAGS_key[index + 1]; const char* end = platform; while (*end && (*end < '0' || *end > '9')) { ++end; } name.append(platform, end - platform); break; } } return name; } const char* platform_extra_config(const char* config) { for (int index = 0; index < FLAGS_key.count(); index += 2) { if (!strcmp("extra_config", FLAGS_key[index]) && !strcmp(config, FLAGS_key[index + 1])) { return config; } } return ""; } const char* colortype_name(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return "Unknown"; case kAlpha_8_SkColorType: return "Alpha_8"; case kIndex_8_SkColorType: return "Index_8"; case kARGB_4444_SkColorType: return "ARGB_4444"; case kRGB_565_SkColorType: return "RGB_565"; case kRGBA_8888_SkColorType: return "RGBA_8888"; case kBGRA_8888_SkColorType: return "BGRA_8888"; case kRGBA_F16_SkColorType: return "RGBA_F16"; default: SkASSERT(false); return "unexpected colortype"; } } SkColor color_to_565(SkColor color) { SkPMColor pmColor = SkPreMultiplyColor(color); U16CPU color16 = SkPixel32ToPixel16(pmColor); return SkPixel16ToColor(color16); } sk_sp create_portable_typeface(const char* name, SkFontStyle style) { return create_font(name, style); } void set_portable_typeface(SkPaint* paint, const char* name, SkFontStyle style) { paint->setTypeface(create_font(name, style)); } void write_pixels(SkCanvas* canvas, const SkBitmap& bitmap, int x, int y, SkColorType colorType, SkAlphaType alphaType) { SkBitmap tmp(bitmap); const SkImageInfo info = SkImageInfo::Make(tmp.width(), tmp.height(), colorType, alphaType); canvas->writePixels(info, tmp.getPixels(), tmp.rowBytes(), x, y); } sk_sp create_checkerboard_shader(SkColor c1, SkColor c2, int size) { SkBitmap bm; bm.allocPixels(SkImageInfo::MakeS32(2 * size, 2 * size, kPremul_SkAlphaType)); bm.eraseColor(c1); bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2); bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2); return SkShader::MakeBitmapShader( bm, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode); } SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) { SkBitmap bitmap; bitmap.allocPixels(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType)); SkCanvas canvas(bitmap); sk_tool_utils::draw_checkerboard(&canvas, c1, c2, checkSize); return bitmap; } void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) { SkPaint paint; paint.setShader(create_checkerboard_shader(c1, c2, size)); paint.setBlendMode(SkBlendMode::kSrc); canvas->drawPaint(paint); } SkBitmap create_string_bitmap(int w, int h, SkColor c, int x, int y, int textSize, const char* str) { SkBitmap bitmap; bitmap.allocN32Pixels(w, h); SkCanvas canvas(bitmap); SkPaint paint; paint.setAntiAlias(true); sk_tool_utils::set_portable_typeface(&paint); paint.setColor(c); paint.setTextSize(SkIntToScalar(textSize)); canvas.clear(0x00000000); canvas.drawString(str, SkIntToScalar(x), SkIntToScalar(y), paint); // Tag data as sRGB (without doing any color space conversion). Color-space aware configs // will process this correctly but legacy configs will render as if this returned N32. SkBitmap result; result.setInfo(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType)); result.setPixelRef(sk_ref_sp(bitmap.pixelRef()), 0, 0); return result; } void add_to_text_blob(SkTextBlobBuilder* builder, const char* text, const SkPaint& origPaint, SkScalar x, SkScalar y) { SkPaint paint(origPaint); SkTDArray glyphs; size_t len = strlen(text); glyphs.append(paint.textToGlyphs(text, len, nullptr)); paint.textToGlyphs(text, len, glyphs.begin()); paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding); const SkTextBlobBuilder::RunBuffer& run = builder->allocRun(paint, glyphs.count(), x, y, nullptr); memcpy(run.glyphs, glyphs.begin(), glyphs.count() * sizeof(uint16_t)); } static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) { SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f)); unsigned char r = static_cast((0.5f * norm.fX + 0.5f) * 255); unsigned char g = static_cast((-0.5f * norm.fY + 0.5f) * 255); unsigned char b = static_cast((0.5f * norm.fZ + 0.5f) * 255); *bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b); } void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f); SkVector3 norm; for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { norm.fX = (x + 0.5f - center.fX) / halfSize.fX; norm.fY = (y + 0.5f - center.fY) / halfSize.fY; SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY; if (tmp >= 1.0f) { norm.set(0.0f, 0.0f, 1.0f); } else { norm.fZ = sqrtf(1.0f - tmp); } norm_to_rgb(bm, x, y, norm); } } } void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); SkIRect inner = dst; inner.inset(dst.width()/4, dst.height()/4); SkPoint3 norm; const SkPoint3 left = SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2); const SkPoint3 up = SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2); const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { if (inner.contains(x, y)) { norm.set(0.0f, 0.0f, 1.0f); } else { SkScalar locX = x + 0.5f - center.fX; SkScalar locY = y + 0.5f - center.fY; if (locX >= 0.0f) { if (locY > 0.0f) { norm = locX >= locY ? right : down; // LR corner } else { norm = locX > -locY ? right : up; // UR corner } } else { if (locY > 0.0f) { norm = -locX > locY ? left : down; // LL corner } else { norm = locX > locY ? up : left; // UL corner } } } norm_to_rgb(bm, x, y, norm); } } } void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); static const SkScalar k1OverRoot3 = 0.5773502692f; SkPoint3 norm; const SkPoint3 leftUp = SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3); const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3, -k1OverRoot3, k1OverRoot3); const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { SkScalar locX = x + 0.5f - center.fX; SkScalar locY = y + 0.5f - center.fY; if (locX >= 0.0f) { if (locY > 0.0f) { norm = locX >= locY ? rightUp : down; // LR corner } else { norm = rightUp; } } else { if (locY > 0.0f) { norm = -locX > locY ? leftUp : down; // LL corner } else { norm = leftUp; } } norm_to_rgb(bm, x, y, norm); } } } #if defined(_MSC_VER) // MSVC takes ~2 minutes to compile this function with optimization. // We don't really care to wait that long for this function. #pragma optimize("", off) #endif void make_big_path(SkPath& path) { #include "BigPathBench.inc" } static float gaussian2d_value(int x, int y, float sigma) { // don't bother with the scale term since we're just going to normalize the // kernel anyways float temp = expf(-(x*x + y*y)/(2*sigma*sigma)); return temp; } static float* create_2d_kernel(float sigma, int* filterSize) { // We will actually take 2*halfFilterSize+1 samples (i.e., our filter kernel // sizes are always odd) int halfFilterSize = SkScalarCeilToInt(6*sigma)/2; int wh = *filterSize = 2*halfFilterSize + 1; float* temp = new float[wh*wh]; float filterTot = 0.0f; for (int yOff = 0; yOff < wh; ++yOff) { for (int xOff = 0; xOff < wh; ++xOff) { temp[yOff*wh+xOff] = gaussian2d_value(xOff-halfFilterSize, yOff-halfFilterSize, sigma); filterTot += temp[yOff*wh+xOff]; } } // normalize the kernel for (int yOff = 0; yOff < wh; ++yOff) { for (int xOff = 0; xOff < wh; ++xOff) { temp[yOff*wh+xOff] /= filterTot; } } return temp; } static SkPMColor blur_pixel(const SkBitmap& bm, int x, int y, float* kernel, int wh) { SkASSERT(wh & 0x1); int halfFilterSize = (wh-1)/2; float r = 0.0f, g = 0.0f, b = 0.0f; for (int yOff = 0; yOff < wh; ++yOff) { int ySamp = y + yOff - halfFilterSize; if (ySamp < 0) { ySamp = 0; } else if (ySamp > bm.height()-1) { ySamp = bm.height()-1; } for (int xOff = 0; xOff < wh; ++xOff) { int xSamp = x + xOff - halfFilterSize; if (xSamp < 0) { xSamp = 0; } else if (xSamp > bm.width()-1) { xSamp = bm.width()-1; } float filter = kernel[yOff*wh + xOff]; SkPMColor c = *bm.getAddr32(xSamp, ySamp); r += SkGetPackedR32(c) * filter; g += SkGetPackedG32(c) * filter; b += SkGetPackedB32(c) * filter; } } U8CPU r8, g8, b8; r8 = (U8CPU) (r+0.5f); g8 = (U8CPU) (g+0.5f); b8 = (U8CPU) (b+0.5f); return SkPackARGB32(255, r8, g8, b8); } SkBitmap slow_blur(const SkBitmap& src, float sigma) { SkBitmap dst; dst.allocN32Pixels(src.width(), src.height(), true); int wh; std::unique_ptr kernel(create_2d_kernel(sigma, &wh)); for (int y = 0; y < src.height(); ++y) { for (int x = 0; x < src.width(); ++x) { *dst.getAddr32(x, y) = blur_pixel(src, x, y, kernel.get(), wh); } } return dst; } // compute the intersection point between the diagonal and the ellipse in the // lower right corner static SkPoint intersection(SkScalar w, SkScalar h) { SkASSERT(w > 0.0f || h > 0.0f); return SkPoint::Make(w / SK_ScalarSqrt2, h / SK_ScalarSqrt2); } // Use the intersection of the corners' diagonals with their ellipses to shrink // the bounding rect SkRect compute_central_occluder(const SkRRect& rr) { const SkRect r = rr.getBounds(); SkScalar newL = r.fLeft, newT = r.fTop, newR = r.fRight, newB = r.fBottom; SkVector radii = rr.radii(SkRRect::kUpperLeft_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newL = SkTMax(newL, r.fLeft + radii.fX - p.fX); newT = SkTMax(newT, r.fTop + radii.fY - p.fY); } radii = rr.radii(SkRRect::kUpperRight_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newR = SkTMin(newR, r.fRight + p.fX - radii.fX); newT = SkTMax(newT, r.fTop + radii.fY - p.fY); } radii = rr.radii(SkRRect::kLowerRight_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newR = SkTMin(newR, r.fRight + p.fX - radii.fX); newB = SkTMin(newB, r.fBottom - radii.fY + p.fY); } radii = rr.radii(SkRRect::kLowerLeft_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newL = SkTMax(newL, r.fLeft + radii.fX - p.fX); newB = SkTMin(newB, r.fBottom - radii.fY + p.fY); } return SkRect::MakeLTRB(newL, newT, newR, newB); } // The widest inset rect SkRect compute_widest_occluder(const SkRRect& rr) { const SkRect& r = rr.getBounds(); const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner); const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner); const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner); const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner); SkScalar maxT = SkTMax(ul.fY, ur.fY); SkScalar maxB = SkTMax(ll.fY, lr.fY); return SkRect::MakeLTRB(r.fLeft, r.fTop + maxT, r.fRight, r.fBottom - maxB); } // The tallest inset rect SkRect compute_tallest_occluder(const SkRRect& rr) { const SkRect& r = rr.getBounds(); const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner); const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner); const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner); const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner); SkScalar maxL = SkTMax(ul.fX, ll.fX); SkScalar maxR = SkTMax(ur.fX, lr.fX); return SkRect::MakeLTRB(r.fLeft + maxL, r.fTop, r.fRight - maxR, r.fBottom); } bool copy_to(SkBitmap* dst, SkColorType dstColorType, const SkBitmap& src) { SkPixmap srcPM; if (!src.peekPixels(&srcPM)) { return false; } SkBitmap tmpDst; SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType); if (!tmpDst.setInfo(dstInfo)) { return false; } // allocate colortable if srcConfig == kIndex8_Config sk_sp ctable = nullptr; if (dstColorType == kIndex_8_SkColorType) { if (src.colorType() != kIndex_8_SkColorType) { return false; } ctable = sk_ref_sp(srcPM.ctable()); } if (!tmpDst.tryAllocPixels(ctable.get())) { return false; } SkPixmap dstPM; if (!tmpDst.peekPixels(&dstPM)) { return false; } if (!srcPM.readPixels(dstPM)) { return false; } dst->swap(tmpDst); return true; } void copy_to_g8(SkBitmap* dst, const SkBitmap& src) { SkASSERT(kBGRA_8888_SkColorType == src.colorType() || kRGBA_8888_SkColorType == src.colorType()); SkImageInfo grayInfo = src.info().makeColorType(kGray_8_SkColorType); dst->allocPixels(grayInfo); uint8_t* dst8 = (uint8_t*)dst->getPixels(); const uint32_t* src32 = (const uint32_t*)src.getPixels(); const int w = src.width(); const int h = src.height(); const bool isBGRA = (kBGRA_8888_SkColorType == src.colorType()); for (int y = 0; y < h; ++y) { if (isBGRA) { // BGRA for (int x = 0; x < w; ++x) { uint32_t s = src32[x]; dst8[x] = SkComputeLuminance((s >> 16) & 0xFF, (s >> 8) & 0xFF, s & 0xFF); } } else { // RGBA for (int x = 0; x < w; ++x) { uint32_t s = src32[x]; dst8[x] = SkComputeLuminance(s & 0xFF, (s >> 8) & 0xFF, (s >> 16) & 0xFF); } } src32 = (const uint32_t*)((const char*)src32 + src.rowBytes()); dst8 += dst->rowBytes(); } } #if SK_SUPPORT_GPU sk_sp MakeLinearToSRGBColorFilter() { return SkSRGBColorFilter::Make(GrSRGBEffect::Mode::kLinearToSRGB); } sk_sp MakeSRGBToLinearColorFilter() { return SkSRGBColorFilter::Make(GrSRGBEffect::Mode::kSRGBToLinear); } #endif } // namespace sk_tool_utils