#!/usr/bin/python # encoding: utf-8 # Copyright 2017 Google Inc. # # Use of this source code is governed by a BSD-style license that can be found # in the LICENSE file. # # This is an A/B test utility script used by calmbench.py # # For each bench, we get a distribution of min_ms measurements from nanobench. # From that, we try to recover the 1/3 and 2/3 quantiles of the distribution. # If range (1/3 quantile, 2/3 quantile) is completely disjoint between A and B, # we report that as a regression. # # The more measurements we have for a bench, the more accurate our quantiles # are. However, taking more measurements is time consuming. Hence we'll prune # out benches and only take more measurements for benches whose current quantile # ranges are disjoint. # # P.S. The current script is brute forcely translated from a ruby script. So it # may be ugly... import re import os import sys import time import json import subprocess import shlex import multiprocessing from argparse import ArgumentParser from multiprocessing import Process from threading import Thread from threading import Lock from pdb import set_trace HELP = """ \033[31mPlease call calmbench.py to drive this script if you're not doing so. This script is not supposed to be used by itself. (At least, it's not easy to use by itself.) \033[0m """ FACTOR = 3 # lower/upper quantile factor DIFF_T = 0.99 # different enough threshold TERM = 10 # terminate after this no. of iterations without suspect changes MAXTRY = 30 # max number of nanobench tries to narrow down suspects UNITS = "ns µs ms s".split() timesLock = Lock() timesA = {} timesB = {} def parse_args(): parser = ArgumentParser(description=HELP) parser.add_argument('outdir', type=str, help="output directory") parser.add_argument('a', type=str, help="name of A") parser.add_argument('b', type=str, help="name of B") parser.add_argument('nano_a', type=str, help="path to A's nanobench binary") parser.add_argument('nano_b', type=str, help="path to B's nanobench binary") parser.add_argument('arg_a', type=str, help="args for A's nanobench run") parser.add_argument('arg_b', type=str, help="args for B's nanobench run") parser.add_argument('repeat', type=int, help="number of initial runs") parser.add_argument('skip_b', type=str, help=("whether to skip running B" " ('true' or 'false')")) parser.add_argument('config', type=str, help="nanobenh config") parser.add_argument('threads', type=int, help="number of threads to run") parser.add_argument('noinit', type=str, help=("whether to skip running B" " ('true' or 'false')")) parser.add_argument('--concise', dest='concise', action="store_true", help="If set, no verbose thread info will be printed.") parser.set_defaults(concise=False) # Additional args for bots BHELP = "bot specific options" parser.add_argument('--githash', type=str, default="", help=BHELP) parser.add_argument('--keys', type=str, default=[], nargs='+', help=BHELP) args = parser.parse_args() args.skip_b = args.skip_b == "true" args.noinit = args.noinit == "true" if args.threads == -1: args.threads = 1 if args.config in ["8888", "565"]: # multi-thread for CPU only args.threads = max(1, multiprocessing.cpu_count() / 2) return args def append_dict_sorted_array(dict_array, key, value): if key not in dict_array: dict_array[key] = [] dict_array[key].append(value) dict_array[key].sort() def add_time(args, name, bench, t, unit): normalized_t = t * 1000 ** UNITS.index(unit); if name.startswith(args.a): append_dict_sorted_array(timesA, bench, normalized_t) else: append_dict_sorted_array(timesB, bench, normalized_t) def append_times_from_file(args, name, filename): with open(filename) as f: lines = f.readlines() for line in lines: items = line.split() if len(items) > 10: bench = items[10] matches = re.search("([+-]?\d*.?\d+)(s|ms|µs|ns)", items[3]) if (not matches or items[9] != args.config): continue time_num = matches.group(1) time_unit = matches.group(2) add_time(args, name, bench, float(time_num), time_unit) class ThreadRunner: """Simplest and stupidiest threaded executer.""" def __init__(self, args): self.concise = args.concise self.threads = [] def add(self, args, fn): if len(self.threads) >= args.threads: self.wait() t = Thread(target = fn) t.daemon = True self.threads.append(t) t.start() def wait(self): def spin(): i = 0 spinners = [". ", ".. ", "..."] while len(self.threads) > 0: timesLock.acquire() sys.stderr.write( "\r" + spinners[i % len(spinners)] + " (%d threads running)" % len(self.threads) + " \r" # spaces for erasing characters ) timesLock.release() time.sleep(0.5) i += 1 if not self.concise: ts = Thread(target = spin); ts.start() for t in self.threads: t.join() self.threads = [] if not self.concise: ts.join() def split_arg(arg): raw = shlex.split(arg) result = [] for r in raw: if '~' in r: result.append(os.path.expanduser(r)) else: result.append(r) return result def run(args, threadRunner, name, nano, arg, i): def task(): file_i = "%s/%s.out%d" % (args.outdir, name, i) should_run = not args.noinit and not (name == args.b and args.skip_b) if i <= 0: should_run = True # always run for suspects if should_run: if i > 0: timesLock.acquire() print "Init run %d for %s..." % (i, name) timesLock.release() subprocess.check_call(["touch", file_i]) with open(file_i, 'w') as f: subprocess.check_call([nano] + split_arg(arg) + ["--config", args.config], stderr=f, stdout=f) timesLock.acquire() append_times_from_file(args, name, file_i) timesLock.release() threadRunner.add(args, task) def init_run(args): threadRunner = ThreadRunner(args) for i in range(1, max(args.repeat, args.threads / 2) + 1): run(args, threadRunner, args.a, args.nano_a, args.arg_a, i) run(args, threadRunner, args.b, args.nano_b, args.arg_b, i) threadRunner.wait() def get_lower_upper(values): i = max(0, (len(values) - 1) / FACTOR) return values[i], values[-i - 1] def different_enough(lower1, upper2): return upper2 < DIFF_T * lower1 def get_suspects(): suspects = [] for bench in timesA.keys(): if bench not in timesB: continue lowerA, upperA = get_lower_upper(timesA[bench]) lowerB, upperB = get_lower_upper(timesB[bench]) if different_enough(lowerA, upperB) or different_enough(lowerB, upperA): suspects.append(bench) return suspects def process_bench_pattern(s): if ".skp" in s: # skp bench won't match their exact names... return "^\"" + s[0:(s.index(".skp") + 3)] + "\"" else: return "^\"" + s + "\"$" def suspects_arg(suspects): patterns = map(process_bench_pattern, suspects) return " --match " + (" ".join(patterns)) def median(array): return array[len(array) / 2] def regression(bench): a = median(timesA[bench]) b = median(timesB[bench]) if (a == 0): # bad bench, just return no regression return 1 return b / a def percentage(x): return (x - 1) * 100 def format_r(r): return ('%6.2f' % percentage(r)) + "%" def normalize_r(r): if r > 1.0: return r - 1.0 else: return 1.0 - 1/r def test(): args = parse_args() init_run(args) last_unchanged_iter = 0 last_suspect_number = -1 tryCnt = 0 it = 0 while tryCnt < MAXTRY: it += 1 suspects = get_suspects() if len(suspects) != last_suspect_number: last_suspect_number = len(suspects) last_unchanged_iter = it if (len(suspects) == 0 or it - last_unchanged_iter >= TERM): break print "Number of suspects at iteration %d: %d" % (it, len(suspects)) threadRunner = ThreadRunner(args) for j in range(1, max(1, args.threads / 2) + 1): run(args, threadRunner, args.a, args.nano_a, args.arg_a + suspects_arg(suspects), -j) run(args, threadRunner, args.b, args.nano_b, args.arg_b + suspects_arg(suspects), -j) tryCnt += 1 threadRunner.wait() suspects = get_suspects() if len(suspects) == 0: print ("%s and %s does not seem to have significant " + \ "performance differences.") % (args.a, args.b) else: suspects.sort(key = regression) print "%s (compared to %s) is likely" % (args.a, args.b) for suspect in suspects: r = regression(suspect) if r < 1: print "\033[31m %s slower in %s\033[0m" % \ (format_r(1/r), suspect) else: print "\033[32m %s faster in %s\033[0m" % \ (format_r(r), suspect) with open("%s/bench_%s_%s.json" % (args.outdir, args.a, args.b), 'w') as f: results = {} for bench in timesA: r = regression(bench) if bench in suspects else 1.0 results[bench] = { args.config: { "signed_regression": normalize_r(r), "lower_quantile_ms": get_lower_upper(timesA[bench])[0] * 1e-6, "upper_quantile_ms": get_lower_upper(timesA[bench])[1] * 1e-6 } } output = {"results": results} if args.githash: output["gitHash"] = args.githash if args.keys: keys = {} for i in range(len(args.keys) / 2): keys[args.keys[i * 2]] = args.keys[i * 2 + 1] output["key"] = keys f.write(json.dumps(output, indent=4)) print ("\033[36mJSON results available in %s\033[0m" % f.name) with open("%s/bench_%s_%s.csv" % (args.outdir, args.a, args.b), 'w') as out: out.write(("bench, significant?, raw regresion, " + "%(A)s quantile (ns), %(B)s quantile (ns), " + "%(A)s (ns), %(B)s (ns)\n") % {'A': args.a, 'B': args.b}) for bench in suspects + timesA.keys(): if (bench not in timesA or bench not in timesB): continue ta = timesA[bench] tb = timesB[bench] out.write( "%s, %s, %f, " % (bench, bench in suspects, regression(bench)) + ' '.join(map(str, get_lower_upper(ta))) + ", " + ' '.join(map(str, get_lower_upper(tb))) + ", " + ("%s, %s\n" % (' '.join(map(str, ta)), ' '.join(map(str, tb)))) ) print (("\033[36m" + "Compared %d benches. " + "%d of them seem to be significantly differrent." + "\033[0m") % (len([x for x in timesA if x in timesB]), len(suspects))) print ("\033[36mPlease see detailed bench results in %s\033[0m" % out.name) if __name__ == "__main__": try: test() except Exception as e: print e print HELP raise