/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PictureRenderer.h" #include "SamplePipeControllers.h" #include "SkCanvas.h" #include "SkDevice.h" #include "SkImageEncoder.h" #include "SkGPipe.h" #include "SkMatrix.h" #include "SkPicture.h" #include "SkScalar.h" #include "SkString.h" #include "SkTDArray.h" #include "SkTypes.h" #include "picture_utils.h" #if SK_SUPPORT_GPU #include "SkGpuDevice.h" #endif namespace sk_tools { enum { kDefaultTileWidth = 256, kDefaultTileHeight = 256 }; void PictureRenderer::init(SkPicture* pict) { SkASSERT(NULL == fPicture); SkASSERT(NULL == fCanvas.get()); if (fPicture != NULL || NULL != fCanvas.get()) { return; } SkASSERT(pict != NULL); if (NULL == pict) { return; } fPicture = pict; fCanvas.reset(this->setupCanvas()); } SkCanvas* PictureRenderer::setupCanvas() { return this->setupCanvas(fPicture->width(), fPicture->height()); } SkCanvas* PictureRenderer::setupCanvas(int width, int height) { switch(fDeviceType) { case kBitmap_DeviceType: { SkBitmap bitmap; sk_tools::setup_bitmap(&bitmap, width, height); return SkNEW_ARGS(SkCanvas, (bitmap)); break; } #if SK_SUPPORT_GPU case kGPU_DeviceType: { SkAutoTUnref device(SkNEW_ARGS(SkGpuDevice, (fGrContext, SkBitmap::kARGB_8888_Config, width, height))); return SkNEW_ARGS(SkCanvas, (device.get())); break; } #endif default: SkASSERT(0); } return NULL; } void PictureRenderer::end() { this->resetState(); fPicture = NULL; fCanvas.reset(NULL); } void PictureRenderer::resetState() { #if SK_SUPPORT_GPU if (this->isUsingGpuDevice()) { SkGLContext* glContext = fGrContextFactory.getGLContext( GrContextFactory::kNative_GLContextType); SK_GL(*glContext, Finish()); } #endif } void PictureRenderer::finishDraw() { SkASSERT(fCanvas.get() != NULL); if (NULL == fCanvas.get()) { return; } fCanvas->flush(); #if SK_SUPPORT_GPU if (this->isUsingGpuDevice()) { SkGLContext* glContext = fGrContextFactory.getGLContext( GrContextFactory::kNative_GLContextType); SkASSERT(glContext != NULL); if (NULL == glContext) { return; } SK_GL(*glContext, Finish()); } #endif } bool PictureRenderer::write(const SkString& path) const { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return false; } SkBitmap bitmap; sk_tools::setup_bitmap(&bitmap, fPicture->width(), fPicture->height()); fCanvas->readPixels(&bitmap, 0, 0); sk_tools::force_all_opaque(bitmap); return SkImageEncoder::EncodeFile(path.c_str(), bitmap, SkImageEncoder::kPNG_Type, 100); } void PipePictureRenderer::render() { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return; } PipeController pipeController(fCanvas.get()); SkGPipeWriter writer; SkCanvas* pipeCanvas = writer.startRecording(&pipeController); pipeCanvas->drawPicture(*fPicture); writer.endRecording(); this->finishDraw(); } void SimplePictureRenderer::render() { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return; } fCanvas->drawPicture(*fPicture); this->finishDraw(); } TiledPictureRenderer::TiledPictureRenderer() : fTileWidth(kDefaultTileWidth) , fTileHeight(kDefaultTileHeight) {} void TiledPictureRenderer::init(SkPicture* pict) { SkASSERT(pict != NULL); SkASSERT(0 == fTiles.count()); if (NULL == pict || fTiles.count() != 0) { return; } this->INHERITED::init(pict); if (fTileWidthPercentage > 0) { fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100)); } if (fTileHeightPercentage > 0) { fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100)); } if (fTileMinPowerOf2Width > 0) { this->setupPowerOf2Tiles(); } else { this->setupTiles(); } } void TiledPictureRenderer::render() { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return; } this->drawTiles(); this->copyTilesToCanvas(); this->finishDraw(); } void TiledPictureRenderer::end() { this->deleteTiles(); this->INHERITED::end(); } TiledPictureRenderer::~TiledPictureRenderer() { this->deleteTiles(); } void TiledPictureRenderer::clipTile(SkCanvas* tile) { SkRect clip = SkRect::MakeWH(SkIntToScalar(fPicture->width()), SkIntToScalar(fPicture->height())); tile->clipRect(clip); } void TiledPictureRenderer::addTile(int tile_x_start, int tile_y_start, int width, int height) { SkCanvas* tile = this->setupCanvas(width, height); tile->translate(SkIntToScalar(-tile_x_start), SkIntToScalar(-tile_y_start)); this->clipTile(tile); fTiles.push(tile); } void TiledPictureRenderer::setupTiles() { for (int tile_y_start = 0; tile_y_start < fPicture->height(); tile_y_start += fTileHeight) { for (int tile_x_start = 0; tile_x_start < fPicture->width(); tile_x_start += fTileWidth) { this->addTile(tile_x_start, tile_y_start, fTileWidth, fTileHeight); } } } // The goal of the powers of two tiles is to minimize the amount of wasted tile // space in the width-wise direction and then minimize the number of tiles. The // constraints are that every tile must have a pixel width that is a power of // two and also be of some minimal width (that is also a power of two). // // This is sovled by first taking our picture size and rounding it up to the // multiple of the minimal width. The binary representation of this rounded // value gives us the tiles we need: a bit of value one means we need a tile of // that size. void TiledPictureRenderer::setupPowerOf2Tiles() { int rounded_value = fPicture->width(); if (fPicture->width() % fTileMinPowerOf2Width != 0) { rounded_value = fPicture->width() - (fPicture->width() % fTileMinPowerOf2Width) + fTileMinPowerOf2Width; } int num_bits = SkScalarCeilToInt(SkScalarLog2(fPicture->width())); int largest_possible_tile_size = 1 << num_bits; // The tile height is constant for a particular picture. for (int tile_y_start = 0; tile_y_start < fPicture->height(); tile_y_start += fTileHeight) { int tile_x_start = 0; int current_width = largest_possible_tile_size; while (current_width >= fTileMinPowerOf2Width) { // It is very important this is a bitwise AND. if (current_width & rounded_value) { this->addTile(tile_x_start, tile_y_start, current_width, fTileHeight); tile_x_start += current_width; } current_width >>= 1; } } } void TiledPictureRenderer::deleteTiles() { for (int i = 0; i < fTiles.count(); ++i) { SkDELETE(fTiles[i]); } fTiles.reset(); } void TiledPictureRenderer::drawTiles() { for (int i = 0; i < fTiles.count(); ++i) { fTiles[i]->drawPicture(*(fPicture)); } } void TiledPictureRenderer::finishDraw() { for (int i = 0; i < fTiles.count(); ++i) { fTiles[i]->flush(); } #if SK_SUPPORT_GPU if (this->isUsingGpuDevice()) { SkGLContext* glContext = fGrContextFactory.getGLContext( GrContextFactory::kNative_GLContextType); SkASSERT(glContext != NULL); if (NULL == glContext) { return; } SK_GL(*glContext, Finish()); } #endif } void TiledPictureRenderer::copyTilesToCanvas() { for (int i = 0; i < fTiles.count(); ++i) { // Since SkPicture performs a save and restore when being drawn to a // canvas, we can be confident that the transform matrix of the canvas // is what we set when creating the tiles. SkMatrix matrix = fTiles[i]->getTotalMatrix(); SkScalar tile_x_start = matrix.getTranslateX(); SkScalar tile_y_start = matrix.getTranslateY(); SkBitmap source = fTiles[i]->getDevice()->accessBitmap(false); fCanvas->drawBitmap(source, -tile_x_start, -tile_y_start); } } }